На правах рукописи

ЗИМА Александра Михайловна

# Активные частицы каталитических систем на основе негемовых комплексов железа для процессов селективного C=C и C–H окисления пероксидом водорода и пероксикарбоновыми кислотами

02.00.04 – Физическая химия

### ΑΒΤΟΡΕΦΕΡΑΤ

## диссертации на соискание ученой степени кандидата химических наук

Новосибирск - 2019

Работа выполнена в Федеральном государственном бюджетном учреждении науки «Федеральный исследовательский центр «Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук».

| Научный руководитель:  | доктор химических наук, профессор<br>Талзи Евгений Павлович                                                                                                                                                   |  |  |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Официальные оппоненты: | <b>Терентьев Александр Олегович</b> ,<br>доктор химических наук, члкорр. РАН,<br>профессор, ФГБУН Институт<br>органической химии им. Н.Д. Зелинского<br>Российской академии наук,<br>заведующий лабораторией; |  |  |
|                        | Приходченко Петр Валерьевич,<br>доктор химических наук,<br>ФГБУН Институт общей и неорганической<br>химии им. Н.С. Курнакова Российской<br>академии наук,<br>заведующий лабораторией                          |  |  |
| Ведущая организация:   | ФГБУН Институт «Международный                                                                                                                                                                                 |  |  |

Защита состоится "<u>19</u>" <u>июня</u> 2019 г. в <u>16:00</u> часов на заседании диссертационного совета Д 003.012.01 в Федеральном государственном бюджетном учреждении науки «Федеральный исследовательский центр «Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук» по адресу: 630090, г. Новосибирск, пр. Академика Лаврентьева, д. 5.

томографический центр» Сибирского отделения Российской академии наук

С диссертацией можно ознакомиться в библиотеке и на сайте Федерального государственного бюджетного учреждения науки «Федеральный исследовательский центр «Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук», адрес сайта http://catalysis.ru.

Автореферат разослан

Ученый секретарь диссертационного совета, к.х.н., доцент "<u>19</u>" апреля 2019 г.

Алексей Анатольевич Ведягин

#### ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы исследования. Способность ферментативных систем осуществлять хемо-, регио- и стереоселективное окисление органических субстратов в мягких условиях стимулировала поиск синтетических систем, реализующих подобные превращения. В последние 20 лет достигнут использовании значительный прогресс в каталитических систем (L)Fe<sup>II</sup>/H<sub>2</sub>O<sub>2</sub>/RCOOH и (L)Fe<sup>III</sup>/H<sub>2</sub>O<sub>2</sub>/RCOOH (L = тетрадентатный *N*-донорный лиганд) для регио- и стереоселективного окисления С-Н и С=С связей органических молекул. Предполагается, что активными частицами окисления в таких системах являются оксокомплексы железа(V) ((L)Fe<sup>V</sup>=O). Поэтому факторов, определяющих активность понимание И селективность (L)Fe<sup>V</sup>=O. интермелиатов важно для рационального поиска новых эффективных и селективных каталитических систем.

К началу нашего исследования в литературе имелось только несколько примеров наблюдения интермедиатов  $(L)Fe^{V}=O$ . Причем наиболее надежно эти частицы были идентифицированы в малоактивных, модельных системах. Исходя из этого, особый интерес представляет обнаружение частиц  $(L)Fe^{V}=O$ в каталитических системах, пригодных для препаративного применения, изучение их свойств в реакциях с различными органическими субстратами и исследование факторов, влияющих на их активность и селективность.

<u>Целью данной работы</u> являлось изучение железо-кислородных интермедиатов, образующихся в каталитических системах (L)Fe<sup>II</sup>/H<sub>2</sub>O<sub>2</sub>/RCOOH и (L)Fe<sup>III</sup>/H<sub>2</sub>O<sub>2</sub>/RCOOH для селективного C=C эпоксидирования и окислительного C–H гидроксилирования алканов и аренов, и выявление факторов, влияющих на их реакционную способность.

Для достижения поставленной цели <u>решались следующие задачи</u>:

1. Методом спектроскопии ЭПР при низких температурах ( $-85 \, ^{\circ}C \, \dots \, -70 \, ^{\circ}C$ ) детектировались оксокомплексы железа(V), ведущие селективное окисление органических субстратов каталитическими системами (*L*)Fe<sup>III</sup>( $\mu$ -

OH)<sub>2</sub>Fe<sup>III</sup>(L)/карбоновая кислота/окислитель, где L – тетрадентатный Nдонорный аминопиридиновый лиганд. Проводилась оценка реакционной способности оксокомплексов железа(V) путем определения константы скорости второго порядка обнаруженных интермедиатов в C=C эпоксидировании и C-H гидроксилировании алканов и аренов при температурах –85 °C ... –70 °C.

2. В системах комплекс железа/карбоновая кислота/окислитель изучалось влияние природы карбоновой кислоты и окислителя на электронную структуру и свойства железо-кислородных интермедиатов, ответственных за селективное окисление органических субстратов.

3. Полученные данные о природе и свойствах железо-кислородных интермедиатов сопоставлялись с каталитическими свойствами соответствующих каталитических систем в окислении органических субстратов для поиска корреляций между электронным строением наблюдаемых интермедиатов и регио- и стереоселективностью окисления.

<u>Научная новизна.</u> Впервые обнаружены низкоспиновые ( $g_1 = 2.07, g_2 = 2.01, g_3 = 1.96$ ) и высокоспиновые ( $g_1, g_2 = 3.96, g_3 = 1.96$ ) железо-кислородные интермедиаты, нестабильные при низких температурах (-85 °C ... -40 °C), и образующиеся в каталитических системах (L)Fe<sup>III</sup>( $\mu$ -OH)<sub>2</sub>Fe<sup>III</sup>(L)/карбоновая кислота/окислитель, L – аминопиридиновый лиганд. Данные интермедиаты ответственны за селективное окисление органических субстратов рассматриваемыми каталитическими системами и, вероятно, представляют собой оксокомплексы железа(V).

Обнаруженные частицы непосредственно осуществляют С=С и С-Н окисление при низких температурах. Измерены соответствующие константы скорости второго порядка. Высокая реакционная способность обнаруженных частиц подтверждает их ключевую роль в селективном окислении.

Показано, что природа карбоновой кислоты и окислителя влияет на электронное строение обнаруженных интермедиатов и их реакционную

способность в процессах C=C и C-H окисления. Установлена взаимосвязь между электронным строением наблюдаемых активных частиц и регио- и стереоселективностью соответствующих каталитических систем.

Практическая значимость. Каталитические системы на основе комплексов железа с лигандом PDP и пероксида водорода в качестве окислителя являются в настоящий момент наиболее активными и селективными каталитическими системами ЛЛЯ регио- и стереоселективного окисления сложных органических молекул. Однако до наших исследований не было прямых экспериментальных данных 0 природе активных частиц данных каталитических систем. В диссертации впервые методом ЭПР обнаружены активные частицы ряда родственных каталитических систем, в которых комплексы железа содержали электронодонорные заместители в пиридиновых кольцах PDP-лигандов. Выявлены факторы, отвечающие за стабильность и реакционную способность обнаруженных активных частиц. Показано, что наибольшую энантиоселективность в эпоксидировании а, βненасыщенных кетонов проявляют каталитические системы, в которых наблюдаются высокоспиновые железо-кислородные интермедиаты. Показана возможность применения рассматриваемых систем в окислении ароматических соединений.

<u>Методы исследования</u>. Основным методом, использовавшимся в настоящей работе для обнаружения активных частиц и изучения их реакционной способности, являлась спектроскопия ЭПР. Для определения выходов продуктов окисления в каталитических системах использовались методы ГХ, ЖХ, ГХ-МС и ЯМР. Установление строения используемых катализаторов осуществлялось на основе методов РСА, ЯМР и элементного анализа.

#### Положения, выносимые на защиту:

1. Обнаружение при низких температурах (-85 °C ... -40 °C) железокислородных интермедиатов, ответственных за селективное окисление органических субстратов каталитическими системами (*L*)Fe<sup>III</sup>(µ-

OH)<sub>2</sub>Fe<sup>III</sup>(L)/карбоновая кислота/окислитель, где (L)Fe<sup>III</sup>( $\mu$ -OH)<sub>2</sub>Fe<sup>III</sup>(L) – димерные комплексы железа(III) с N-гетероциклическими аминопиридиновыми лигандами, содержащими электронодонорные заместители в различных положениях пиридиновых колец.

2. Отнесение обнаруженных интермедиатов к оксокомплексам железа(V).

3. Влияние природы используемой карбоновой кислоты и окислителя на электронную структуру обнаруженных интермедиатов.

4. Измерение констант скорости второго порядка реакции обнаруженных интермедиатов в реакциях C=C и C-H окисления.

5. Установление взаимосвязи между природой обнаруженных интермедиатов и каталитическими свойствами соответствующих каталитических систем.

<u>Личный вклад автора.</u> Автором синтезированы органические лиганды и ряд комплексов железа, проведены спектроскопические эксперименты ЭПР в отсутствие И В присутствии субстратов, а также основная часть каталитических исследований по окислению субстратов. Кроме этого, автор участвовал в постановке задач и разработке подходов к их решению, в обсуждении полученных результатов, обработке и подготовке материала к публикациям по теме диссертационной работы. Рентгеноструктурный анализ проводился к.х.н. Самсоненко Д.Г. (ИНХ СО РАН); анализ продуктов окисления ряда субстратов методом ГХ-МС – к.х.н. Шашковым М.В. (ИК СО РАН); элементный анализ синтезированных соединений – сотрудниками Лаборатории микроанализа НИОХ СО РАН (зав. лаб. к.х.н. Тихова В.Д.).

<u>Достоверность результатов.</u> Результаты диссертационной работы, ее научные положения и выводы являются достоверными и обоснованными. Достоверность представленных результатов основывается на высоком проведения методическом уровне работы с использованием ряда современных физико-химических методов, согласованности экспериментальных данных с данными других исследователей. Основные результаты работы опубликованы в зарубежных рецензируемых изданиях,

входящих в международные системы Scopus и Web of Science и представлялись на всероссийских и международных конференциях.

<u>Апробация работы.</u> Результаты, изложенные в диссертационной работе, многократно докладывались и обсуждались на всероссийских и международных конференциях. Наиболее важные результаты были лично представлены автором в 4 докладах: 12<sup>th</sup> European Congress on Catalysis «Catalysis: Balancing the use of fossil and renewable resources» (2015, Казань, Россия), X International Conference "Mechanisms of Catalytic Reactions" (MCR-X) (2016, Светлогорск, Россия), 13<sup>th</sup> European Congress on Catalysis «A bridge to the future» (2017, Флоренция, Италия), 21<sup>st</sup> International Symposium on Homogeneous Catalysis (ISHC XXI) (2018, Амстердам, Нидерланды).

<u>Публикации.</u> По материалам диссертационной работы опубликовано 7 статей в зарубежных рецензируемых изданиях, входящих в международные системы Scopus и Web of Science, и 4 тезисов докладов.

Структура и объем диссертации. Диссертация состоит из введения, шести глав, выводов, списка сокращений, списка обозначений исследуемых в работе комплексов, списка использованной литературы и приложения. Работа изложена на 155 страницах, содержит 57 рисунков и 23 таблицы. Библиографический список цитируемой литературы включает 217 наименований.

#### СОДЕРЖАНИЕ РАБОТЫ

Во <u>введении</u> обоснована актуальность темы, сформулированы цель и задачи исследования, приведены положения, выносимые на защиту, новизна работы и ее практическая значимость.

<u>Первая глава</u> содержит литературный обзор и состоит из четырех основных разделов. В <u>первом разделе</u> обсуждаются железосодержащие ферменты, способные осуществлять селективное окисление органических веществ. Во <u>втором</u> – синтетические модели негемовых железосодержащих оксигеназ. В <u>третьем разделе</u> изложены имеющиеся в литературе результаты

исследований их механизма каталитического действия, рассмотрены основные типы частиц, обнаруженные в системах на основе комплексов железа, и среди них выделены основные кандидаты на роль ключевых интермедиатов процессов окисления. <u>Четвертый раздел</u> литературного обзора посвящен практическому применению каталитических систем в препаративном окислении сложных органических субстратов. В <u>заключении</u> выделены те задачи, которые предстояло решить в ходе работы над диссертацией.

<u>Вторая глава</u> включает описание использованных при выполнении работы реактивов и растворителей, экспериментальные методики синтеза лигандов и комплексов железа на их основе. Описаны условия регистрации спектров ЯМР и ЭПР, приведены методики приготовления образцов для измерения методом ЭПР, а также процедуры каталитического C=C эпоксидирования, C-H гидроксилирования алканов и аренов при различных температурах.

<u>Третья глава</u> содержит результаты экспериментальных исследований и их обсуждение и состоит из двух разделов. В <u>первом разделе</u> приведены результаты исследования методом ЭПР каталитических систем на основе комплексов железа **3-5** (рисунок 1), в которых в качестве окислителя использовались H<sub>2</sub>O<sub>2</sub> и CH<sub>3</sub>CO<sub>3</sub>H, а в качестве каталитической добавки карбоновые кислоты (АА и ЕНА, рисунок 2).

Значения *g*-факторов обнаруженного в системе  $4/H_2O_2/CH_3COOH$  интермедиата 4a (S = 1/2,  $g_1$  = 2.071,  $g_2$  = 2.008,  $g_3$  = 1.960, рисунок 36) близки к значениям, приведенным в работе [1] для известного комплекса железа(V) с макроциклическим лигандом TMC ( $g_1$  = 2.053,  $g_2$  = 2.010,  $g_3$  = 1.971). Поэтому можно предположить, что и в нашей системе образуется оксокомплексе железа(V) [(PDP\*)Fe<sup>V</sup>=O(OC(O)CH\_3)]<sup>2+</sup> (4a). Распад комплекса 4a описывается кинетикой первого порядка. Период полураспада частицы при -80 °C составил  $\tau_{1/2}$  = 2 мин. Максимальная концентрация частицы 4a не

превышает 1% от суммарного содержания железа в системе. Частицы аналогичного типа были также обнаружены в системах **3**(**5**)/H<sub>2</sub>O<sub>2</sub>/AA.



Рисунок 1 – Строение комплексов железа, использованных в работе

5



Рисунок 2 - Структуры и аббревиатуры карбоновых кислот, использованных в работе

В этом разделе также рассмотрено влияние структуры добавленной карбоновой кислоты (RCOOH) на природу активных частиц. Проведено сопоставление интермедиатов, обнаруженных в каталитических системах  $2/H_2O_2/AA$  и  $2/H_2O_2/EHA$ . На рисунке 4б (синяя линия) представлен спектр ЭПР системы  $2/H_2O_2/EHA = 1:3:10$ , который содержит сигналы двух низкоспиновых (S = 1/2) комплексов железа  $2a^{EHA}$  и  $2b^{EHA}$  (верхний индекс ЕНА здесь и далее обозначает тип карбоновой кислоты, используемой в эксперименте).  $2b^{EHA}$  стабилен даже при комнатной температуре и имеет ромбический спектр ЭПР ( $g_1 = 2,75, g_2 = 2,41, g_3 = 1,64$ ).  $2b^{EHA}$  был отнесен к низкоспиновому комплексу железа(III) с предлагаемой структурой [(PDP)Fe<sup>III</sup>(OC(O)R)(RCOOH)]<sup>2+</sup>.



Рисунок 3 - Спектры ЭПР частиц 4а и 6а

Частица 2a<sup>EHA</sup> очень неустойчива и распадается при -75 °C с периодом полураспада  $\tau_{1/2} = 4$  мин. Добавление 0,5 экв. (0,02 M) циклогексена существенно ускоряло распад 2а<sup>ЕНА</sup> (*т*<sub>1/2</sub><0,5 мин при -75 °С). Спектр ЭПР 2a<sup>EHA</sup> практически идентичен спектру 4a<sup>AA</sup>. Поэтому электронная структура частицы 2a<sup>EHA</sup> должна быть аналогична электронной структуре 4a<sup>AA</sup>. Спектр ЭПР частицы 2а<sup>ЕНА</sup> резко отличается от спектра ЭПР частицы 2а<sup>АА</sup>, наблюдаемой в системе  $2/H_2O_2/CH_3COOH = 1:3:10$  (рисунок 4a). Частица  $2a^{AA}$ распадается с  $\tau_{1/2}$  = 5 мин при –85 °С. Далее исследовалось влияние широкого ряда карбоновых кислот (рисунок 2) на параметры ЭПР активных частиц, образующихся в каталитических системах 2/H<sub>2</sub>O<sub>2</sub>/RCOOH. В присутствии таких кислот, как ЕНА, ЕВА и РVА методом ЭПР наблюдались неустойчивые частицы типа  $2a^{EHA}$  ( $g_1 = 2.069$ ,  $g_2 = 2.007$ ,  $g_3 = 1.961-1.963$ , рисунок 46). Спектры ЭПР этих частиц резко отличаются от спектров ЭПР интермедиатов, наблюдаемых при использовании в качестве каталитической добавки неразветвленных карбоновых кислот, таких как АА, ВА, СА (рисунок 2), для которых наблюдались только активные частицы типа 2аААА (с большой анизотропией g-фактора g<sub>1</sub> ~ 2.7, g<sub>2</sub> ~ 2.4, g<sub>3</sub> ~ 1.7).



Рисунок 4 – (а) Спектры ЭПР (–196 °C) образца  $2/H_2O_2/CH_3COOH$ ([2]:[H<sub>2</sub>O<sub>2</sub>]:[CH<sub>3</sub>COOH] = 1:3:10, [2] = 0.04 M), замороженного сразу после смешения реагентов в течение 1 мин при –75 °C, после выдерживания образца при –85 °C в течение 1 мин. Сигналы, обозначенные звездочками, принадлежат гидроксокомплексу железа [(PDP)Fe<sup>III</sup>–OH(CH<sub>3</sub>CN)]<sup>2+</sup> ( $g_1 = 2.44, g_2 = 2.21, g_3 = 1.89$ ). (б) Спектры ЭПР (–196 °C) образцов  $2/H_2O_2/RCOOH$  ([2]:[H<sub>2</sub>O<sub>2</sub>]:[RCOOH] = 1:3:10, [2] = 0.04 M), замороженных сразу после смешения реагентов в течение 2.5 мин при –65 °C (PVA – красная линия; EBA – зеленая линия; EHA – синяя линия). В качестве растворителя использовалась смесь CH<sub>2</sub>Cl<sub>2</sub>/CH<sub>3</sub>CN (v/v = 1.8:1)

В отличие от каталитических систем 2/H<sub>2</sub>O<sub>2</sub>/RCOOH, системы 4/H<sub>2</sub>O<sub>2</sub>/RCOOH содержат только интермедиаты с малой анизотропией *g*-фактора, независимо от используемых карбоновых кислот (рисунок 5). Параметры ЭПР этих интермедиатов были практически идентичными; однако максимальные концентрации наблюдаемых частиц, образующихся в аналогичных условиях, различны для разных кислот (рисунок 5).



Рисунок 5 – Спектры ЭПР (-196 °C) образцов 4/H<sub>2</sub>O<sub>2</sub>/RCOOH ([Fe]:[H<sub>2</sub>O<sub>2</sub>]:[RCOOH] = 1:3:10, [4] = 0.04 M), замороженных сразу после смешения реагентов в течение 1.5 мин при -75 °C в смеси растворителей 1.8:1 CH<sub>2</sub>Cl<sub>2</sub>/CH<sub>3</sub>CN и выдерживания образцов при -85 °C в течение нескольких минут для достижения максимума концентрации активных частиц

Bo втором разделе приведены результаты обнаружению по И исследованию высокоспиновых железо-кислородных интермедиатов. Обнаружено, что в каталитических системах на основе комплекса 6 наблюдаются только высокоспиновые комплексы железа. В том числе в высокоспиновом состоянии находятся активные частицы этих каталитических систем, предположительно оксокомплексы железа(V). В спектре ЭПР каталитической системы 6/H<sub>2</sub>O<sub>2</sub>/AA наблюдается сигнал нового комплекса **6** $a^{AA}$  с *g*-факторами  $g_1, g_2 = 3,96$  и  $g_3 = 1,96$  (рисунок 3а). Максимальная концентрация 6а<sup>АА</sup> не превышает 3% от общей концентрации железа. Комплекс 6а<sup>АА</sup> неустойчив и распадается с константой скорости первого порядка  $k_1 = (2,0 \pm 0,5) \cdot 10^{-3} \text{ с}^{-1}$  при -40 °C. В присутствии 3 экв. циклогексена распад **6**а<sup>AA</sup> значительно ускорялся  $(k_{\text{набл}} = (7 \pm 2) \cdot 10^{-3} \text{ c}^{-1}$  при -40 °C), что свидетельствует о прямой реакции 6а<sup>AA</sup> с циклогексеном. При замене AA на EHA в качестве добавки, наблюдался интермедиат **6**а<sup>EHA</sup> со спектром ЭПР, практически идентичным спектру 6а<sup>AA</sup>. Реакционная способность **6**а<sup>AA</sup> по отношению к циклогексену ясно показывает, что интермедиат содержит окисляющий фрагмент (Fe<sup>III</sup>-OOH или Fe<sup>V</sup>=O). Спектры ЭПР 6а<sup>AA</sup> и 6а<sup>EHA</sup> отличаются от спектров известных частиц Fe<sup>III</sup>-ООН и Fe<sup>III</sup>-OOR. Кроме того, до сих пор прямая реакция интермедиатов Fe<sup>III</sup>-ООН и Fe<sup>III</sup>-ООК с циклогексеном не наблюдалась. Таким образом, 6a<sup>AA</sup> 6a<sup>EHA</sup> частицы И являются гидропероксоне или алкилпероксокомплексами железа. Спектр ЭПР частицы 6а<sup>AA</sup> соответствует спектру, который следует ожидать, для высокоспиновых комплексов железа(V) (S = 3/2,  $g_1, g_2 \sim 4$  и  $g_3 \sim 2$ , [2]). Поэтому **6a**<sup>AA</sup> и **6a**<sup>EHA</sup> были отнесены к высокоспиновым комплексам железа(V).

В четвертой главе, состоящей из пяти разделов, обсуждается реакционная способность обнаруженных оксокомплексов железа(V) в C=C окислении. В первом разделе для изучения реакционной способности частиц. 3/CH<sub>3</sub>COOH/H<sub>2</sub>O<sub>2</sub> обнаруженных в каталитических системах И 4/СН<sub>3</sub>СООН/Н<sub>2</sub>О<sub>2</sub>, были сопоставлены периоды полураспада интермедиатов За и 4а в присутствии и в отсутствие различных субстратов при низкой температуре. Установлено, что добавление таких электрононасыщенных алкенов как циклогексен или *цис-\beta*-метилстирол ([алкен]/[Fe] = 0.5) к растворам, содержащим частицы **3a** и **4a** (**3**/H<sub>2</sub>O<sub>2</sub>/CH<sub>3</sub>COOH = 1:6:20, [3] = 0.02 M:  $4/H_2O_2/CH_3COOH = 1:6:20,$  [4] = 0.02 M), приводит к уменьшению периода полураспада **3a** и **4a** с 4-5 мин до <0.5 мин при температуре -85 °C. Таким образом, данные частицы способны быстро окислять электрононасыщенные алкены даже при очень низких температурах (-85°С), а значит, частицы За и 4а могут быть отнесены к оксокомплексам железа(V), исходя из их чрезвычайно высокой реакционной способности в реакциях окисления алкенов и значений g-факторов, близких к таковым для описанных модельных оксокомплексов железа(V).

Во <u>втором разделе</u> продемонстрирована возможность окисления таких субстратов как циклогексен и октен-1 каталитическими системами  $3(4)/H_2O_2/AA$  и показано, что системы на основе комплекса 4 демонстрируют большие конверсии, чем системы на основе комплекса 3.

В третьем разделе обсуждается использование каталитических систем 2/H<sub>2</sub>O<sub>2</sub>/RCOOH с различными карбоновыми кислотами в энантиоселективном эпоксидировании халкона. Системы, содержащие активные частицы с малой анизотропией g-фактора (RCOOH = EHA, EBA, PVA), продемонстрировали заметно более высокую энантиоселективность, чем содержащие неразветвленные кислоты (RCOOH = AA, BA, CA, IBA, CHA). Системы 4/H<sub>2</sub>O<sub>2</sub>/RCOOH демонстрируют энантиоселективность, которая хорошо наблюдаемыми максимальными коррелирует с концентрациями интермедиатов типа 4а в этих системах.

B четвертом разделе показано, что природа активных частиц каталитических систем на основе комплексов железа с лигандами семейства PDP зависит от типа используемого окислителя ( $H_2O_2$ ,  $R_1OOH$ ,  $R_1 = t$ -Bu или Cm;  $R_2C(O)OOH$ ,  $R_2 = CH_3$  и 3-Cl-C<sub>6</sub>H<sub>4</sub>). На основе результатов ЭПРспектроскопических измерений, данных по энантиоселективности эпоксидирования халкона и стереоселективности окисления Z-стильбена, корреляций Гаммета и метода меченых атомов <sup>18</sup>О предложены следующие основные детали механизма С=С эпоксидирования с участием различных окислителей: (1) перенос кислорода от  $[(L)Fe^{III}(OOR_1)(CH_3CN)]^{2+}$  к субстрату ациклического, предположительно с образованием радикального интермедиата для систем  $2(4)/R_1OOH$ , (2) в системах  $2(4)/H_2O_2/RCOOH$  и  $[(L)Fe^{V}=O(OC(O)R)]^{2+}$  осуществляет интермедиат  $2(4)/R_1OOH/RCOOH$ ациклического, эпоксидирование с образованием предположительно интермедиата, катионного И (3) при эпоксидировании системой **2(4)**/R<sub>2</sub>C(O)OOH/RCOOH осуществляется согласованный перенос кислорода от ацилпероксокомплекса железа(III)  $[(L)Fe^{III}(OOC(O)R_2)]^{2+}$  к субстрату.

В <u>пятом разделе</u> приведены данные, полученные при сравнении каталитических систем, содержащих высокоспиновые (S = 3/2) и низкоспиновые (S = 1/2) оксокомплексы железа(V) в асимметрическом эпоксидировании халкона. Показано, что системы, в которых наблюдаются высокоспиновые активные частицы, демонстрируют более высокую энантиоселективность (Э.И.) в эпоксидировании халкона (таблица 1).

Прямые исследования реакционной способности показали. что высокоспиновые интермедиаты менее реакционноспособны в эпоксидировании циклогексена, чем низкоспиновые. Пониженная способность высокоспиновых реакционная интермедиатов хорошо согласуется с более высокой энантиоселективностью соответствующих каталитических систем в эпоксидировании халкона.

В <u>пятой главе</u>, состоящей из двух разделов, рассмотрена реакционная способность интермедиатов Fe(V)=O по отношению к алканам. В <u>первом</u> <u>разделе</u> показано, что в присутствии циклогексана распад **4a**<sup>AA</sup> существенно ускоряется и описывается константой скорости  $k_2 = (2,0 \pm 0,2) \cdot 10^{-3} \text{ M}^{-1} \text{c}^{-1}$ . Для такого субстрата как циклооктан было получено значение  $k_2 = (1,8 \pm 0,4) \cdot 10^{-2} \text{ M}^{-1} \text{c}^{-1}$ , которое на порядок больше соответствующего значения для циклогексана. Распад **4a**<sup>AA</sup> в присутствии соединений с более слабыми C–H связями (энергия диссоциации связи составляет 87 ккал/моль для этилбензола и 84,8 ккал/моль для кумола) при  $-70 \,^{\circ}\text{C}$  был слишком быстрым для надежных измерений скорости методом ЭПР ( $k_2 > 0,1 \text{ M}^{-1}\text{c}^{-1}$ ).

Неожиданно было обнаружено, что в каталитических системах  $3/H_2O_2/AA$  и  $3/CH_3CO_3H/AA$  в спектре ЭПР наблюдаются сигналы единственного нестабильного интермедиата  $3a^{AA}$  (g = 2.076,  $g_2 = 2.011$ ,  $g_3 = 1.964$ ), в то время как каталитические системы  $3/H_2O_2/EHA$  и  $3/CH_3CO_3H/EHA$  демонстрируют спектры ЭПР двух нестабильных частиц  $3a_1^{EHA}$  ( $g_1 = 2.071$ ,  $g_2 = 2.004$ ,  $g_3 = 1.963$ ) и  $3a_2^{EHA}$  ( $g_1 = 2.076$ ,  $g_2 = 2.011$ ,  $g_3 = 1.964$ ) (рисунок 6).

| О катализатор <b>4</b> <sup>ИЛИ</sup> <b>6</b> <sup>(0.5 мол.%)</sup> О<br>окислитель, RCOOH<br>CH <sub>3</sub> CN, 0 °C, 3 часа |             |                                   |         |                                 |           |  |
|----------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------------|---------|---------------------------------|-----------|--|
| №                                                                                                                                | катализатор | окислитель                        | добавка | выход эпоксида (%) <sup>б</sup> | Э.И.(%) " |  |
| 1                                                                                                                                | 4           | $H_2O_2$                          | AA      | 75                              | 63        |  |
| 2                                                                                                                                | 4           | $H_2O_2$                          | EHA     | 89                              | 82        |  |
| 3                                                                                                                                | 4           | CH <sub>3</sub> CO <sub>3</sub> H | -       | 54                              | 67        |  |
| 4                                                                                                                                | 4           | CH <sub>3</sub> CO <sub>3</sub> H | AA      | 49                              | 67        |  |
| 5                                                                                                                                | 4           | CH <sub>3</sub> CO <sub>3</sub> H | EHA     | 53                              | 67        |  |
| 6                                                                                                                                | 6           | $H_2O_2$                          | AA      | 20                              | 86        |  |
|                                                                                                                                  |             |                                   |         |                                 |           |  |

EHA

AA

EHA

 $H_2O_2$ 

CH<sub>3</sub>CO<sub>3</sub>H

CH<sub>3</sub>CO<sub>3</sub>H

CH<sub>3</sub>CO<sub>3</sub>H

**Таблица 1** – Асимметрическое эпоксидирование халкона различными окислителями, катализируемое комплексами 4 и  $6^{a}$ 

<sup>*а*</sup> При 0 °С, халкон (100 мкмоль), окислитель, H<sub>2</sub>O<sub>2</sub> (200 мкмоль), CH<sub>3</sub>CO<sub>3</sub>H, (110 мкмоль), добавка карбоновой кислоты (55 мкмоль), загрузка катализатора 0.5 мол.%, окислитель добавлялся шприцевым насосом в течение 30 минут, смесь перемешивалась в течение дополнительных 2,5 часов с последующим анализом методом ЖХ. <sup>*б*</sup> Выход эпоксида рассчитан по субстрату. <sup>*в*</sup> Абсолютная конфигурация преобладающего изомера эпоксида халкона (2*R*,3*S*).

Оценка реакционной способности частиц  $3a^{AA}$ ,  $3a_1^{EHA}$  и  $3a_2^{EHA}$  в окислении алканов показала, что в отличие от частиц  $4a^{AA}$  и  $4a^{EHA}$ , константа скорости для распада частицы  $3a^{AA}$  при –70 °C не изменялась при добавлении 50 экв. циклогексана. По-видимому, оксокомплексы железа  $4a^{AA}$  и  $4a^{EHA}$  являются более реакционоспособными, чем  $3a^{AA}$ . Оцененная константа скорости  $k_2 = (3.0 \pm 0.5) \cdot 10^{-3} \text{ M}^{-1} \text{c}^{-1}$  для реакции  $3a_2^{EHA}$  с циклогексаном при –70 °C была близка к таковой для  $4a^{EHA}$  ( $k_2 = (2.6 \pm 0.5) \cdot 10^{-3} \text{ M}^{-1} \text{c}^{-1}$ ). Реакционная

способность  $3a_1^{EHA}$  по отношению к циклогексану при -70 °C не была измерена из-за быстрого превращения  $3a_1^{EHA}$  в  $3a_2^{EHA}$ .



Рисунок 6 – ЭПР спектры (–196 °C) образца 3/CH<sub>3</sub>CO<sub>3</sub>H/EHA ([Fe]:[CH<sub>3</sub>CO<sub>3</sub>H]:[EHA] = 1:3:10, [Fe] = 0.04 М), замороженного сразу после смешения реагентов в течение 2 мин при –70 °C. Растворитель – CH<sub>2</sub>Cl<sub>2</sub>/CH<sub>3</sub>CN (v/v = 1.8:1)

Во <u>втором разделе</u> показано, что каталитические системы на основе мономерных комплексов железа 1, 2 и димерных комплексов железа 3, 4 и различных окислителей ( $H_2O_2$ ,  $CH_3CO_3H$ , *m*-CPBA) способны к хемо-, региои стереоселективному С–Н окислению алканов. На основании данных спектроскопии ЭПР и каталитических экспериментов высказаны предположения о природе активных интермедиатов этих каталитических систем. Для всех изученных катализаторов при использовании в качестве окислителя  $H_2O_2$  или  $CH_3CO_3H$  основными активными частицами окисления алканов являются высоковалентные оксокомплексы железа с формальной степенью окисления +5.

Иная картина наблюдается при использовании тех же каталитических систем в стереоселективном С=С эпоксидировании. Здесь вклад ацилпероксокомплексов железа  $[(L)Fe^{III}OOC(O)R)]^{2+}$  в эпоксидирование является значительным И. возможно, преобладающим в системах (L)Fe/RCO<sub>3</sub>H. Очевидно, что реакционная способность ацилпероксокомплексов железа в окислении С-Н связей алканов является недостаточной; поэтому эти ацилпероксокомплексы успевают превратиться в

оксокомплексы железа, которые и являются фактическими интермедиатами окисления C-H связей. Единственным исключением являются каталитические системы, в которых в качестве окислителя используется т-CPBA: лля них ацилпероксокомплексы железа(III) могут вносить существенный вклад в окисление, особенно в случае комплексов 1 и 3. Исследования прямой реакционной способности подтверждают ключевую роль оксокомплексов железа с предлагаемыми структурами (RCOOH = EHA)  $[(PDP*)^{+}Fe^{IV}=O(OC(O)CH_3)]^{2+}$ .  $[(PDP*)^{+}Fe^{IV}=O(OC(O)R)]^{2+}$ и  $[(TPA^*)^{+}Fe^{IV}=O(OC(O)R)]^{2+}$  в каталитическом окислении циклогексана.

Шестая глава состоит из двух разделов. В первом разделе изложены результаты по изучению реакционной способности интермедиатов 4а<sup>АА</sup> и 49<sup>EHA</sup> окислении замещенных бензолов при -70 °C. Добавление в хлорбензола к растворам, содержащим  $4a^{AA}$  или  $4a^{EHA}$  при -70 °C, приводило к почти немедленному (в течение 30 с) падению концентрации  $4a^{AA}$  и  $4a^{EHA}$  (в 50 раз для 4а<sup>AA</sup> и в 12 раз для 4а<sup>EHA</sup>), что позволило оценить константу скорости второго порядка  $k_2$  для реакции **4** $a^{AA}$  и **4** $a^{EHA}$  с хлорбензолом при -70 °C (6 и 2 M<sup>-1</sup>c<sup>-1</sup>, соответственно). При замене хлорбензола бензолом или толуолом измерить  $k_2$  не удалось в силу быстрой реакции с субстратом. Для более электронодефицитных субстратов (ацетофенон или нитробензол) значения  $k_2$  могут быть определены. Например, распад частицы 4a<sup>EHA</sup> в образце 4/CH<sub>3</sub>CO<sub>3</sub>H/EHA при температуре -70 °C соответствует кинетике константой скорости  $k_1 = (1.5 \pm 0.2) \cdot 10^{-3} \text{ c}^{-1}$ . первого порядка с представленной на рисунке 7а. В присутствии ацетофенона (0.08 М) распад 4а<sup>ЕНА</sup> существенно ускоряется (рисунок 7б) и описывается бимолекулярной константой скорости  $k_2 = 0.16 \pm 0.02 \text{ M}^{-1}\text{c}^{-1}$ .

Анализ констант скорости  $k_2$  для реакций  $4a^{AA}$  и  $4a^{EHA}$  с различными замещенными бензолами показывает, что чем более электрононасыщенным является замещенный бензол, тем большее значение  $k_2$  наблюдается при взаимодействии частицы с субстратом. Реакционная способность  $4a^{AA}$  в

отношении замещенных бензолов несколько выше, чем реакционная способность **4**а<sup>ЕНА</sup>.



Рисунок 7 – спектры ЭПР (–196 °C) (а) образца 4/CH<sub>3</sub>CO<sub>3</sub>H/EHA ([Fe]:[CH<sub>3</sub>CO<sub>3</sub>H]:[EHA] = 1:3:10, [Fe] = 0.04 M), замороженного сразу после смешения реагентов в течение 2 мин при –70 °C в смеси CH<sub>2</sub>Cl<sub>2</sub>/CH<sub>3</sub>CN (v/v = 1.8:1), и выдерживания образца при –70 °C в течение различного времени, (б) образца «а» с добавлением ацетофенона (0.08 M). Относительные концентрации частиц 4a<sup>EHA</sup> (*c*/*c*<sub>0</sub>) от времени приведены выше

Наблюдаемое различие в реакционной способности  $4a^{AA}$  и  $4a^{EHA}$  для ацетофенона при -70 °C ( $k_2 = 0.25$  и  $0.16 \text{ M}^{-1}\text{c}^{-1}$ , соответственно) соответствует разнице в энергии активации только 0.2 ккал/моль. Несколько более низкая реакционная способность  $4a^{EHA}$  может быть вызвана

стерическими затруднениями из-за большего размера фрагмента ЕНА по сравнению с фрагментом АА в **4**а<sup>AA</sup>.

Для того чтобы получить дополнительные аргументы в пользу ключевой роли интермедиата  $4a^{AA}$  в гидроксилировании бензола, было проведено сравнение выхода фенола, образующегося в системе  $4/CH_3CO_3H/AA/C_6H_6$  при температуре -70 °C ([Fe] = 0,04 M, [CH<sub>3</sub>CO<sub>3</sub>H] = 0,4 M, [AA] = 0,4 M, [C<sub>6</sub>H<sub>6</sub>] = 1,2 M) с выходом, ожидаемым из кинетических данных для  $4a^{AA}$ . Близкие значения ожидаемого и экспериментального выхода фенола подтверждают ключевую роль частицы  $4a^{AA}$  в гидроксилировании бензола каталитической системой  $4/CH_3CO_3H/AA$ .

Во <u>втором разделе</u> показано, что комплекс **4** катализирует ароматическое гидроксилирование с использованием пероксида водорода или надуксусной кислоты в качестве окислителя в ацетонитриле, осуществляя до 36,5 оборотов на атом железа. Для окисления моно- и диалкилбензолов пероксидом водорода была зафиксирована высокая селективность по отношению к продуктам ароматического окисления (до 91%).

#### ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ

(L)Fe<sup>III</sup> $(\mu$ -1. Метолом ЭПР системах в каталитических  $OH_{2}Fe^{III}(L)/RCO_{2}H/H_{2}O_{2}(RCO_{3}H)$  впервые обнаружены нестабильные железо-кислородные интермедиаты, где L – N-гетероциклические аминопиридиновые лиганды, содержащие электронодонорные заместители в различных положениях пиридиновых колец. Значения g-факторов трех обнаруженных частиц в системах на основе комплексов с лигандами PDP<sup>Me2OMe</sup>, PDP<sup>MeCF3</sup>, TPA<sup>Me2OMe</sup> ( $g_1 = 2.07$ ,  $g_2 = 2.01$ ,  $g_3 = 1.96$ ) близки к таковым для известных низкоспиновых оксокомплексов железа(V). Интермедиаты, обнаруженные в системах на основе комплекса с лигандом PDP<sup>NMe2</sup>, имеют спектр ЭПР ( $g_1, g_2 = 3.96, g_3 = 1.96$ ), характерный для высокоспиновых (S = 3/2) комплексов железа и, вероятно, являются высокоспиновыми аналогами низкоспиновых перферрильных интермедиатов.

2. В зависимости от природы добавленной карбоновой кислоты в системах Fe(PDP)/H<sub>2</sub>O<sub>2</sub>/RCOOH наблюдаются два типа низкоспиновых активных частиц с малой ( $g_1 = 2.07$ ,  $g_2 = 2.01$ ,  $g_3 = 1.96$ ) и большой ( $g_1 = 2.7$ ,  $g_2 = 2.4$ ,  $g_3 = 1.7$ ) анизотропией *g*-фактора. Первый тип частиц наблюдается при использовании разветвленных карбоновых кислот с третичным  $\alpha$ -углеродным атомом, второй тип – при использовании неразветвленных карбоновых кислот. Предложено объяснение значительного изменения электронного строения данных перферрильных частиц при малых изменениях их структуры.

3. Показано, что обнаруженные интермедиаты способны при низких температурах (от -70 °C до -85 °C) непосредственно вести реакции эпоксидирования и С–Н гидроксилирования различных органических соединений, что свидетельствует об их ключевой роли в реакциях селективного каталитического окисления. Измерены константы скорости ( $k_2$ ) взаимодействия оксокомплексов железа(V) с рядом алканов и аренов. В ряду замещенных аренов  $k_2$  для процесса С–Н гидроксилирования аренов возрастает с ростом электронодонорных свойств заместителей, что согласуется с механизмом электрофильного ароматического замещения.

4. Показано, что при использовании в качестве окислителя пероксида водорода активными частицами процессов эпоксидирования являются оксокомплексы железа(V), причем наибольшую энантиоселективность демонстрируют системы, в которых наблюдаются высокоспиновые перферрильные интермедиаты. Установлено, что при использовании в качестве окислителя пероксикарбоновых кислот основной вклад в эпоксидирование халкона и *Z*-стильбена вносят ацилпероксокомплексы железа(III). На основе результатов ЭПР-спектроскопических измерений, данных по стереоселективности эпоксидирования, корреляций Гаммета, метода меченых атомов <sup>18</sup>О предложены механизмы эпоксидирования с использованием различных окислителей.

5. Установлены корреляции между электронным строением наблюдаемых перферрильных интермедиатов и регио- и стереоселективностью соответствующих каталитических систем в реакциях С–Н окисления. Показано, что при использовании H<sub>2</sub>O<sub>2</sub> и CH<sub>3</sub>CO<sub>3</sub>H в качестве окислителей активными частицами окисления являются оксокомплексы железа(V), а при использовании *m*-CPBA существенный вклад в окисление могут вносить ацилпероксокомплексы железа(III).

#### Список работ, опубликованных по теме диссертации

1. Lyakin, O.Y., Zima, A.M., Samsonenko, D.G., Bryliakov, K.P., Talsi, E.P. EPR Spectroscopic detection of the elusive  $Fe^{V}=O$  intermediates in bioinspired catalyst systems based on dinuclear aminopyridine ferric complexes,  $H_2O_2$  and  $CH_3COOH$ // ACS Catal. – 2015. – V. 5. – P. 2702–2707.

2. Zima, A.M., Lyakin, O.Y., Ottenbacher, R.V., Bryliakov, K.P., Talsi, E.P. Dramatic effect of carboxylic acid on the electronic structure of the active species in Fe(PDP)-catalyzed asymmetric epoxidation // ACS Catal. – 2016. – V. 6. – P. 5399–5404.

 Zima, A.M., Lyakin, O.Y., Ottenbacher, R.V., Bryliakov, K.P., Talsi, E.P. Ironcatalyzed enantioselective epoxidations with various oxidants: Evidence for different active species and epoxidation mechanisms // ACS Catal. – 2017. – V. 7. – P. 60–69.

4. Tkachenko, N.V., Ottenbacher, R.V., Lyakin, O.Y., Zima, A.M., Samsonenko, D.G., Talsi, E.P., Bryliakov, K.P. Highly efficient aromatic C–H oxidation with  $H_2O_2$  in the presence of iron complexes of the PDP Family // ChemCatChem. – 2018. – V. 10. – P. 4052–4057.

5. Zima, A.M., Lyakin, O.Y., Bryliakov, K.P., Talsi, E.P. On the nature of the active intermediates in iron-catalyzed oxidation of cycloalkanes with hydrogen peroxide and peracids // Molecular Catalysis. -2018. - V.455. - P.6-13.

6. Lyakin, O.Y., Zima, A.M., Tkachenko, N.V., Bryliakov, K.P., Talsi, E.P. Direct evaluation of the reactivity of nonheme iron(V)–oxo intermediates toward arenes //

ACS Catal. - 2018. - V. 8. - P. 5255-5260.

7. Zima, A.M., Lyakin, O.Y., Bryliakov, K.P., Talsi, E.P. Direct reactivity studies of non-heme iron-oxo intermediates toward alkane oxidation // Catalysis Communications. – 2018. – V. 108. – P. 77–81.

8. Lyakin, O.Y., Zima, A.M., Bryliakov, K.P., Talsi, E.P. EPR Spectroscopic Study of the Active Species of Iron-catalyzed Enantioselective Epoxidation // XII European Congress on Catalysis "Catalysis: Balancing the use of fossil and renewable resources" – Kazan. – 2015. – P. 1856.

9. Zima, A.M., Lyakin, O.Y., Ottenbacher, R.V., Bryliakov, K.P, Talsi, E.P. Bioinspired nonheme iron catalysts for oxidation: Remarkable effect of carboxylic acid additive on the electronic structure of the active oxoferryl species // X International Conference "Mechanisms of Catalytic Reactions" (MCR-X) – Svetlogorsk. – 2016. – P. 76.

10. Zima, A.M., Lyakin, O.Y., Bryliakov, K.P, Talsi, E.P. Oxoiron(V) intermediates that oxygenate C=C and C-H groups // 13<sup>th</sup> European Congress on Catalysis "A bridge to the future" – Florence (Italy). – 2017.

11. Zima, A.M., Lyakin, O.Y., Bryliakov, K.P., Talsi, E.P. Direct reactivity studies of the arene C-H bond oxidation by iron(V)-oxo intermediates // 21<sup>st</sup> International Symposium on Homogeneous Catalysis (ISHC XXI) – Amsterdam (Netherlands). – 2018. – P. 191.

#### Список цитируемой литературы

1. Van Heuvelen, K. M., Fiedler, A. T., Shan, X., De Hont, R. F., Meier, K. K., Bominaar, E. L., Münck, E., Que, Jr., L. One-electron oxidation of an oxoiron(IV) complex to form an  $[O=Fe^V=NR]^+$  center // Proceedings of the National Academy of Sciences. – 2012. – V. 109. – N. 30. – P. 11933–11938.

Scepaniak, J. J., Vogel, C. S., Khusniyarov, M. M., Heinemann, F. W., Meyer, K., Smith, J. M. Synthesis, Structure, and Reactivity of an Iron(V) Nitride // Science. - 2011. - V. 331. - N. 6020. - P. 1049-1052.

#### ЗИМА Александра Михайловна

## Активные частицы каталитических систем на основе негемовых комплексов железа для процессов селективного С=С и С–Н окисления пероксидом водорода и пероксикарбоновыми кислотами

Автореф. дисс. на соискание ученой степени кандидата химических наук.

Подписано в печать 15.04.2019. Заказ № 27. Формат 60х84/16. Усл. печ. л. 1. Тираж 100 экз. Отпечатано в издательском отделе Института катализа СО РАН 630090, Новосибирск, пр-т Академика Лаврентьева, 5 http://catalysis.ru