Single Atoms of Pt-Group Metals Stabilized by N-Doped Carbon Nanofibers for Efficient Hydrogen Production from Formic Acid
Full article
Общее |
Language:
Английский,
Genre:
Full article,
Status:
Published,
Source type:
Original
|
Journal |
ACS Catalysis
ISSN: 2155-5435
|
Output data |
Year: 2016,
Volume: 6,
Number: 6,
Pages: 3442-3451
Pages count
: 10
DOI:
10.1021/acscatal.6b00476
|
Tags |
formic acid, hydrogen production, nitrogen-doped carbon, renewable biomass, single-atom catalysts |
Authors |
Bulushev Dmitri A.
1,2,6
,
Zacharska Monika
3,4
,
Lisitsyn Alexander S.
1
,
Podyacheva Olga Yu.
1,2
,
Hage Fredrik S.
5
,
Ramasse Quentin M.
5
,
Bangert Ursel
4
,
Bulusheva Lyubov G.
2,6
|
Affiliations |
1 |
Boreskov Institute of Catalysis, SB RAS, 630090 Novosibirsk, Russia
|
2 |
Novosibirsk State University, 630090 Novosibirsk, Russia
|
3 |
Chemical & Environmental Sciences Department, University of Limerick, Limerick, Ireland
|
4 |
Materials & Surface Science Institute, University of Limerick, Limerick, Ireland
|
5 |
SuperSTEM Laboratory, SciTech Daresbury Campus, Daresbury WA4 4AD, United Kingdom
|
6 |
Nikolaev Institute of Inorganic Chemistry, SB RAS, 630090 Novosibirsk, Russia
|
|
Funding (2)
1
|
Russian Science Foundation
|
16-13-00016
|
2
|
European Commission
|
|
Formic acid is a valuable chemical derived from biomass, as it has a high hydrogen-storage capacity and appears to be an attractive source of hydrogen for various applications. Hydrogen production via formic acid decomposition is often based on using supported catalysts with Pt-group metal nanoparticles. In the present paper, we show that the decomposition of the acid proceeds more rapidly on single metal atoms (by up to 1 order of magnitude). These atoms can be obtained by rather simple means through anchoring Pt-group metals onto mesoporous N-functionalized carbon nanofibers. A thorough evaluation of the structure of the active site by aberration-corrected scanning transmission electron microscopy (ac-STEM) in high-angle annular dark field (HAADF) mode and by CO chemisorption, X-ray photoelectron spectroscopy (XPS), and quantum-chemical calculations reveals that the metal atom is coordinated by a pair of pyridinic nitrogen atoms at the edge of graphene sheets. The chelate binding provides an ionic/electron-deficient state of these atoms that prevents their aggregation and thereby leads to an excellent stability under the reaction conditions. Catalysts with single atoms have also shown very high selectivity. Evidently, the findings can be extended to hydrogen production from other chemicals and can be helpful for improving other energy-related and environmentally benign catalytic processes.