5D Operando Tomographic Diffraction Imaging of a Catalyst Bed
Full article
Общее |
Language:
Английский,
Genre:
Full article,
Status:
Published,
Source type:
Original
|
Journal |
Nature Communications
ISSN: 2041-1723
|
Output data |
Year: 2018,
Volume: 9,
Number: 1,
Article number
: 4751,
Pages count
: 1
DOI:
10.1038/s41467-018-07046-8
|
Authors |
Vamvakeros A.
1,2,3,4
,
Jacques S. D. M.
3
,
Di Michiel M.
4
,
Matras D.
2,5
,
Middelkoop V.
6
,
Ismagilov I. Z.
7
,
Matus E. V.
7
,
Kuznetsov V. V.
7
,
Drnec J.
4
,
Senecal P.
1,2
,
Beale A. M.
1,2,3
|
Affiliations |
1 |
Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
|
2 |
Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Harwell, Didcot OX11 0FA, UK
|
3 |
Finden Limited, Merchant House, 5 East St. Helens Street, Abingdon OX14 5EG, UK
|
4 |
ESRF, 71 Avenue des Martyrs, 38000 Grenoble, France
|
5 |
School of Materials, University of Manchester, Manchester M13 9PL, UK
|
6 |
Flemish Institute for Technological Research, VITO NV, Boeretang 200, 2400 Mol, Belgium
|
7 |
Boreskov Institute of Catalysis SB RAS, Pr. Akademika Lavrentieva 5, Novosibirsk, Russian Federation 630090
|
|
Funding (3)
1
|
European Commission
|
262840 FP7-NMP-2010-LARGE-4 DEMCAMER
|
2
|
European Commission
|
679933 H2020-SPIRE-2015 MEMERE
|
3
|
Engineering and Physical Sciences Research Council
|
EP/K007467/1
|
We report the results from the first 5D tomographic diffraction imaging experiment of a complex Ni–Pd/CeO2–ZrO2/Al2O3 catalyst used for methane reforming. This five-dimensional (three spatial, one scattering and one dimension to denote time/imposed state) approach enabled us to track the chemical evolution of many particles across the catalyst bed and relate these changes to the gas environment that the particles experience. Rietveld analysis of some 2 × 106 diffraction patterns allowed us to extract heterogeneities in the catalyst from the Å to the nm and to the μm scale (3D maps corresponding to unit cell lattice parameters, crystallite sizes and phase distribution maps respectively) under different chemical environments. We are able to capture the evolution of the Ni-containing species and gain a more complete insight into the multiple roles of the CeO2-ZrO2 promoters and the reasons behind the partial deactivation of the catalyst during partial oxidation of methane.