На правах рукописи

Федорова Елизавета Александровна

Исследование локальной структуры высокодисперсных форм платины и родия в катализаторах на основе диоксида церия

02.00.04 – Физическая химия

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени

кандидата химических наук

Новосибирск - 2021

Работа выполнена в Федеральном государственном бюджетном учреждении науки «Федеральный исследовательский центр «Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук».

Научный руководитель:	кандидат химических наук Кардаш Татьяна Юрьевна			
Официальные оппоненты:	Авакян Леон Александрович доктор физико-математических наук, профессор кафедры теоретической и вычислительной физики физического факультета Южного федерального университета			
	Мамонтов Григорий Владимирович кандидат химических наук, старший научный сотрудник Национального исследовательского Томского государственного университета			
Ведущая организация:	Федеральное государственное бюджетное учреждение науки Институт неорганической химии им. А.В. Николаева Сибирского отделения Российской академии наук			

Защита состоится «02» июня 2021 г. в 16.00 часов, на заседании диссертационного совета Д 003.012.01 в Федеральном государственном бюджетном учреждении науки «Федеральный исследовательский центр «Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук» по адресу: 630090, г. Новосибирск, пр. Академика Лаврентьева, д. 5.

С диссертацией можно ознакомиться в библиотеке и на сайте Федерального государственного бюджетного учреждения науки «Федеральный исследовательский центр «Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук», адрес сайта http://www.catalysis.ru.

Автореферат разослан

"__"___ 2021 г.

Ученый секретарь диссертационного совета, д.х.н., доцент

Алексей Анатольевич Ведягин

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы. Проблема загрязнения атмосферы выхлопными газами (CO, углеводороды, NO_x) особенно остро стоит в регионах с большой плотностью автотранспорта. Основным способом нейтрализации вредных выбросов является применение катализаторов, содержащих в качестве активного компонента один или несколько благородных металлов Pt, Rh, Pd, нанесенных на оксидные носители. Основной выброс вредных газов в окружающую среду происходит в период холодного запуска автомобиля, когда температура катализатора ниже 150 °С. Одним из активно развивающихся направлений для решения данной проблемы является применение катализаторов на основе высокодисперсных состояний (<1 нм) активного металла на поверхности диоксида церия. Отмечается, что катализаторы, содержащие высокодисперсные формы активного компонента, показывают улучшенные каталитические характеристики в низкотемпературном окислении СО в сравнении с наноразмерными частицами. В литературе обсуждаются различные высокодисперсные формы платины и родия: как субнанометровые и атомарно диспергированные ионные формы на поверхности диоксида церия, так и ионы, встроенные в его решетку СеО₂.

До сих пор нет единого мнения о структуре этих состояний во взаимосвязи с их низкотемпературной каталитической активностью. Такие данные необходимы для понимания и регулирования процессов взаимодействия платины и родия с диоксидом церия при приготовлении катализаторов, а также важны для изучения механизмов протекающих каталитических реакций.

Цель работы заключается в определении атомного строения высокодисперсных форм платины и родия в катализаторах на основе диоксида церия, и установлении взаимосвязи между их локальной структурой

и реакционными и каталитическими свойствами для систем Pt/CeO₂ и Rh/CeO₂.

В соответствии с целью работы были поставлены следующие задачи:

1. Установить влияние количества активного компонента и температуры прокаливания образцов на структурные характеристики катализаторов Pt/CeO₂ и Rh/CeO₂, полученных методом соосаждения.

2. Исследовать локальную структуру платины и родия в катализаторах, содержащих высокодисперсные формы активного компонента, методами радиального распределения атомов и спектроскопии рентгеновского поглощения.

3. Построить атомные модели высокодисперсных форм платины и родия в катализаторах Pt/CeO₂ и Rh/CeO₂.

4. Определить структурные трансформации в катализаторах Pt/CeO₂ и Rh/CeO₂, содержащих высокодисперсные формы активного компонента, в процессе окислительно-восстановительных обработок методом рентгеновской дифракции в режиме in situ.

5. Исследовать влияние локальной структуры высокодисперсных форм платины и родия на активность катализаторов Pt/CeO₂ и Rh/CeO₂ в реакции окисления CO и на их реакционные свойства при взаимодействии с CO и H₂.

Научная новизна:

1. Было показано, что метод соосаждения позволяет получить катализаторы Pt/CeO_2 с содержанием платины от 1 до 30 масс.% и катализаторы Rh/CeO_2 с содержанием родия от 1 до 17 масс.%, в составе которых активный компонент находится исключительно в высокодисперсном ионном состоянии после прокаливания на воздухе вплоть до 600 °C.

2. Для катализаторов Pt/CeO₂ и Rh/CeO₂ с содержанием активного компонента 1 масс.% показано формирование одиночных ионов платины и родия. Увеличение содержания активного компонента более 1 масс.% приводит к появлению дополнительных кластерных форм PtO_x и RhO_x.

3. Установлена локальная структура кластерных форм PtO_x и RhO_x , которые формируются из близлежащих одиночных форм платины и родия. Локальная структура кластеров PtO_x близка к оксиду Pt_3O_4 , тогда как для кластеров RhO_x локальная структура близка к смешанному оксиду $CeRh_2O_5$.

4. Показано, что формирование кластерных форм PtO_x и RhO_x в составе катализаторов Pt/CeO_2 и Rh/CeO_2 приводит к искажению кристаллической решётки диоксида церия. Восстановление катализаторов Pt/CeO_2 и Rh/CeO_2 с помощью СО или H₂ приводит к выходу кислорода из решетки CeO₂ и появлению высокодисперсных металлических состояний. Последующая окислительная обработка приводит к полному или частичному реокислению металлических форм до высокодисперсных ионных состояний платины и родия, что указывает на окислительно-восстановительную обратимость систем Pt/CeO_2 и Rh/CeO_2 .

5. Проведено охарактеризование каталитической активности различных высокодисперсных форм платины и родия в реакции окисления СО. Для катализаторов Pt/CeO_2 наиболее активными являются кластерные формы PtO_x . В случае катализаторов Rh/CeO_2 одиночные и кластерные формы RhO_x демонстрируют близкую каталитическую активность в реакции окисления CO.

Теоретическая и практическая значимость работы. Исследование локальной структуры высокодисперсных форм активного компонента катализатора во взаимосвязи с каталитическими характеристиками позволяет получить новые фундаментальные и прикладные знания. В работе предложены атомные модели локальной структуры каталитически активных высокодисперсных форм платины и родия в составе катализаторов Pt/CeO₂ и Rh/CeO₂. Полученные атомные модели можно использовать для детального исследования механизма реакции окисления СО при температурах ниже комнатной. Полученные данные о природе активных центров позволят целенаправленно синтезировать катализаторы с улучшенными

каталитическими характеристиками для различных практических применений.

Положения, выносимые на защиту.

1. Влияние количества активного компонента и температуры прокаливания на фазовый состав катализаторов Pt/CeO₂ и Rh/CeO₂ и морфологию частиц в их составе.

2. Атомные модели локальной структуры одиночных и кластерных форм платины и родия в составе катализаторов Pt/CeO₂ и Rh/CeO₂.

3. Структурные трансформации в катализаторах Pt/CeO₂ и Rh/CeO₂ в процессе окислительно-восстановительных обработок.

4. Влияние локальной структуры высокодисперсных форм платины и родия на реакционные и каталитические свойства катализаторов Pt/CeO₂ и Rh/CeO₂.

Личный вклад автора. Автор участвовала в постановке цели и задач, решаемых в рамках данной работы, проводила рентгенодифракционный эксперимент, в том числе в режиме in situ, производила фазовый анализ образцов и моделирование экспериментальных дифракционных кривых методом Ритвельда, участвовала в эксперименте по измерению XAFS спектров катализаторов. Федорова Е.А. участвовала в построении атомных высокодисперсных форм платины моделей И родия, проводила интерпретацию данных радиального распределения и моделирование экспериментальных EXAFS данных. Автор принимала участие в обработке и интерпретации данных других физико-химических и каталитических методов, представляла полученные результаты в форме устных и стендовых докладов на научных конференциях и семинарах, а также участвовала в написании научных статей.

Степень достоверности результатов работы. Результаты, представленные в работе, были получены с помощью сертифицированного современного оборудования. Достоверность полученных результатов подтверждалась воспроизводимостью и непротиворечивостью. Полученные

результаты сопоставлялись с имеющимися литературными данными. Результаты работы были опубликованы в рецензируемых журналах и неоднократно обсуждались на всероссийских и международных научных конференциях.

Апробация работы и публикации. Основные результаты исследования по теме данной работы были представлены в качестве устных и стендовых на всероссийских и международных конференциях: IV локладов Международная научная школа-конференция молодых ученых «Catalysis: from Science to Industry» (г. Томск, Россия, 2016), IV Научная конференция «Боресковские чтения» (г. Новосибирск, Россия, 2017), III Российский конгресс по катализу «Роскатализ-2017» (г. Нижний Новгород, 2017), 5-ая Международная школа-конференция по катализу для молодых ученых «Catalyst Design: From Molecular to Industrial Level» (г. Москва, Россия, 2018), 3-я Международная конференция «3rd Fundamentals and applications of cerium dioxide in catalysis» (г. Барселона, Испания, 2018), Школа и конференция по анализу дифракционных данных в реальном пространстве «ADD2019» (г. Гренобль, Франция, 2019), 14-ый Европейский конгресс по катализу «EuropaCat 2019» (г. Ахен, Германия, 2019), 3-я Всероссийская конференция (с международным участием) «Горячие точки химии твердого тела: от новых идей к новым материалам» (г. Новосибирск, Россия, 2019), 3-я Всероссийская конференция «Методы исследования состава и научная структуры функциональных материалов» (г. Новосибирск, Россия, 2020).

Результаты работы опубликованы в 3 статьях в рецензируемых научных журналах, рекомендованных ВАК РФ.

Объем и структура работы. Работа изложена на 130 страницах, состоит из введения, 4 глав, заключения, списка цитируемой литературы и 2 приложений. Работа содержит 50 рисунков, 11 таблиц и 227 библиографических ссылок.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во **введении** изложена актуальность диссертационной работы, сформулированы цель и задачи исследования, а также научная новизна, теоретическая и практическая значимость исследования, приведены положения, выносимые на защиту.

В Главе 1 приведен обзор литературы о каталитических системах Pt/CeO₂ и Rh/CeO₂. Рассмотрены структурные особенности и свойства CeO₂ и твердых растворов на его основе, приведены структуры устойчивых оксидов платины и родия, а также описано локальное окружение платины и родия в их составе. Проанализированы структуры высокодисперсных состояний платины и родия в катализаторах на основе CeO₂, обсуждаемые в литературе, а также рассмотрены каталитические свойства данных систем. Отмечено, что в литературе нет единого мнения о строении высокодисперсных форм платины и родия в катализаторах на основе CeO₂ и его влиянии на каталитическую активность в низкотемпературном окислении CO.

Глава 2 посвящена описанию экспериментальных методов и подходов. Приведены методики синтеза катализаторов Pt/CeO₂ и Rh/CeO₂. Описаны физико-химические методы исследования катализаторов, использованные в данной работе: рентгенофазовый анализ (РФА), метод радиального распределения (РРА), просвечивающая электронная микроскопия (ПЭМ), рентгеновская спектроскопия поглощения (XAS). рентгеновская фотоэлектронная спектроскопия (РФЭС), спектроскопия комбинационного рассеяния (КР). Экспериментальная часть также включает информацию о методах исследования реакционных и каталитических свойств: температурнопрограммированное восстановление (TПВ). температурнопрограммированная реакция с СО (ТПР-СО), с реакционной смесью СО+О2 $(T\Pi P-CO+O_2).$

В Главе 3 приведены результаты исследования катализаторов Pt/CeO₂, полученных методом соосаждения. Серия катализаторов с содержанием

платины 1-30 масс.% и температурой прокаливания от 450 до 900 °C исследовалась набором физико-химических методов: РФА, ПЭМ, РФЭС и спектроскопия КР.

Рисунок 1. Рентгенограммы образцов Pt/CeO_2 с различным содержанием платины (1-30 масс.%), прокаленных при 600 °C (а), зависимость площади удельной поверхности образцов (б), параметра решетки (в) и размера OKP (г) фазы CeO₂ от количества платины в образце.

На рентгенограммах всех катализаторов, прокаленных при 450 и 600 °С, с содержанием платины до 30 масс.% присутствуют только пики, относящиеся к фазе CeO₂ со структурой флюорита (рис. 1а). Дополнительных платина-содержащих фаз не наблюдается, что также подтверждалось данными ПЭМ. На рентгенограммах для образцов с содержанием платины 20-30 масс.% наблюдается дополнительное диффузное рассеяние, которое связано с наличием дополнительной рентгеноаморфной/разупорядоченной компоненты в межблочном пространстве частиц CeO₂. Это объясняет уменьшение площади удельной поверхности для данных образцов (рис. 16) с одновременным уменьшением размеров области когерентного рассеяния (ОКР) для СеО₂ (рис. 1г). По данным РФЭС на поверхности катализаторов Pt/CeO_2 платина присутствует в ионном состоянии Pt^{2+} и Pt^{4+} . КР спектроскопия указывает на отсутствие фаз оксидов платины. Установлено, что при увеличении количества платины в образце параметр решетки фазы CeO_2 увеличивается, в то время как размер OKP уменьшается (рис. 1в, г), что связано с размерным эффектом СеО₂. В случае встраивания ионов платины в решетку CeO₂ следовало бы ожидать уменьшения параметра решетки CeO₂ из-за меньшего ионного радиуса ионов платины в сравнении с Ce⁴⁺. Таким образом, для катализаторов Pt/CeO₂, прокаленных при 450-600 °С, наблюдается формирование высокодисперсных ионных форм платины, локализующихся в основном на поверхности и в приповерхностной области частиц CeO₂. Увеличение содержания платины вплоть до 30 масс.% не приводит к формированию отдельных фаз оксидов платины, но вызывает уменьшение размера частиц CeO2 и формирование разупорядочений на межблочных

Рисунок 2. Кривые радиального распределения (а) и данные EXAFS на Pt L₃-крае поглощения (б) для пиков, относящихся к межкатализаторов Pt/CeO₂, прокаленных при 600°С. Для надёжного детектирования Pt-O и Pt-O-Pt атомным расстояниям в расстояний методом PPA показана экспериментальная кривая для CeO₂ с размером кристаллитов ~5 нм (точки). ствуют расстояния (рис. 2а):

границах, где локализуются высокодисперсные ионные состояния платины.

Исследование локальной структуры высокодисперсных форм платины проводилось с помощью методов РРА и XAS. На кривых РРА высокопроцентных образцов (15-30 масс.%), помимо основных пиков, относящихся к межатомным расстояниям в структуре CeO₂, присутствуют расстояния (рис. 2а): 2.01, 3.10, 3.18 и 3.47 Å. Пик на 2.01 Å относится к Pt-O расстояниям в первой координационной сфере. Более длинные расстояния (3.10, 3.18 и 3.47 Å) на кривых PPA можно соотнести с расстояниями в дальних координационных сферах. Исследование полученных катализаторов методом EXAFS на Pt L₃-крае поглощения (рис. 26) показало формирование близкой локальной структуры платины во всех катализаторах.

Рисунок 3. Структурные модели, использованные для моделирования экспериментальных данных EXAFS для одиночных центров платины в образце 1Pt-CeO₂ (a) и PtOx кластеров в образцах 15Pt-CeO₂ (б) и 30Pt-CeO₂ (в).

Основываясь на наборе расстояний, полученных из данных РРА, были предложены атомные модели одиночных форм платины (рис. 3а), которые представляют собой Pt²⁺ в плоскоквадратной координации на грани (100)

СеО2 и Pt^{4+} в позиции Се4+ решетки CeO_2 . Такие формы наблюдаются в образце с 1 масс.% Рt. С увеличением содержания платины в образце увеличивается вероятность нахождения одиночного центра платины рядом с другими аналогичными центрами. Для катализаторов с платины высоким содержанием предложена модель кластерных форм PtO_x . которая включает

Рисунок 4. Сравнение экспериментальной (точки) и модельной (линия) k^3 -взвешанных функций $\chi(k)$ для Pt L3-края поглощения (a) и их Фурье-образ (б) для катализаторов 1Pt-CeO₂, 15Pt-CeO₂ и 30Pt-CeO₂.

расположенные рядом одиночные центры платины (рис. 3б и 3в), так что локальная структура платины становится близкой к таковой в оксиде Pt_3O_4 . Отмечается аналогичное строение низкоиндексных граней (100) CeO₂ и (100) Pt_3O_4 . Предложенные структуры одиночных центров и оксидных кластерных форм были использованы для моделирования EXAFS спектров. Результаты приведены на рис. 4 и в таблице 1. Можно заметить, что все расстояния уточненные моделированием данных EXAFS наблюдались на кривых PPA.

Таблица 1. Результаты моделирования EXAFS данных на Pt L₃-крае поглощения. В скобках приведены стандартные отклонения полученных величин в последнем знаке.

Образец	Тип рассеяния	R, Å	КЧ	σ^2	ΔE_0	S_{0}^{2}	R_{f}
1Pt-CeO ₂	Pt-O	1.990 (2)	5.3 (1)	0.0025 (3)	6.4 (3)	0.83	0.010
	Pt-O-Ce	3.11 (2)	2.0 (4)	0.009(1)			
15Pt-CeO ₂	Pt-O	2.001 (4)	5.4 (1)	0.0035 (3)	9.1 (3)	0.87	0.010
	Pt-O-Ce	3.12 (1)	0.9 (2)	0.005 (1)			
	Pt-O-Pt	3.49 (1)	0.2(1)	0.005 (1)			
30Pt-CeO ₂	Pt-O	2.000 (3)	5.1 (1)	0.0042 (4)			
	Pt-O-Ce	3.19 (3)	0.6 (3)	0.006 (2)	6.7 (3)	0.85	0.017
	Pt-O-Pt	3.06 (1)	1.1 (1)	0.003 (1)			
	Pt-O-Pt	3.47 (5)	0.3(2)	0.003(1)			

R – межатомное расстояние, КЧ – координационное число, σ^2 – параметр Дебая-Уоллера.

Исследование окислительно-восстановительных свойств катализаторов Pt/CeO₂ методами TПР-CO и TПВ показало, что появление дополнительных кластерных форм PtO_x способствует уменьшению температуры выделения CO₂ и поглощения H₂. Это указывает на формировании более легкосвязанного кислорода в PtO_x в сравнении с более прочносвяфзанным кислородом в одиночных формах платины.

Исследование структурных трансформаций при окислительновосстановительных обработках проводилось методом РФА в режиме in situ (рис. 5а). Было показано, что при нагревании в СО происходит восстановление высокодисперсных ионных форм платины до металлической платины с размером ОКР ~2 нм. Также, при нагреве в СО при 50 °С происходит резкий рост параметра решетки CeO₂ (рис. 56), что связано с выходом кислорода из решетки CeO₂. При последующем реокислении происходит значительное уменьшение количества металлической фазы, что позволяет предположить формирование высокодисперсных ионных состояний платины, указывая на обратимость системы при окислительновосстановительных обработках.

Рисунок 5. Рентгенограммы образца 20Pt-CeO₂ при нагреве в атмосфере CO (а), изменение параметра решетки CeO₂ при нагреве в атмосфере CO (б). Для сравнения приведены данные об изменения параметра решётки чистого CeO₂ при нагревании в CO (темно-красная) и образца 20Pt-CeO₂ в He (зеленая).

Каталитические свойства катализаторов Pt/CeO₂ исследовались в реакции окисления CO кислородом. Показано, что увеличение содержания платины приводит к сдвигу кривой конверсии CO (кривой light-off) в область меньших температур (рис. 6а). Для сопоставления каталитической активности катализаторов с разным содержанием платины осуществляли «разбавление» катализаторов с высоким содержанием платины чистым CeO₂, достигая общего содержания платины ~ 1 масс.%. Как можно видеть из рисунка 6б, образцы 8Pt-CeO₂ и 20Pt-CeO₂, содержащие кластерные формы PtO_x, даже

после «разбавления» CeO₂ показывают каталитическую активность в реакции окисления CO при более низких температурах в сравнении с катализатором 1Pt-CeO₂, содержащем только одиночные формы платины. Таким образом, кластерные формы PtO_x являются более активными в окислении CO в сравнении с одиночными ионными центрами.

Рисунок 6. Зависимость конверсии CO от температуры для CeO₂ (a) и серии катализаторов Pt/CeO₂, прокаленных при 600 °C (a, б). Образцы 8*Pt-CeO₂ и 20*Pt-CeO₂ получены смешиванием образцов 8Pt-CeO₂ и 20Pt-CeO₂ с диоксидом церия до достижения содержания платины 1 масс.%.

В Главе 4 приведены результаты исследования катализаторов Rh/CeO₂, которые исследовали аналогичными для системы Pt/CeO₂ физикохимическими методами. Концентрация родия варьировалась от 1 до 17 масс.%, температура прокаливания – от 450 до 1000 °C.

По данным методов РФА (рис. 7а) и ПЭМ в составе катализаторов Rh/CeO₂, прокаленных при 450-800 °C, наблюдается только фаза CeO₂ вне зависимости от количества родия в катализаторе. Показано, что, также как и для Pt/CeO₂ катализаторов, для образцов Rh/CeO₂ с высоким содержанием родия (13-17 масс.%) наблюдается разупорядочение в межблочном пространстве частиц CeO₂. По данным РФЭС родий во всех катализаторах присутствует в состоянии Rh³⁺. На спектрах КР для серии образцов 8Rh-CeO₂, прокаленных при температуре \geq 800 °C, появляются дополнительные полосы, относящиеся к оксиду Rh₂O₃. При более низких температурах прокаливания

во всех образцах оксидов родия не наблюдается. По мере увеличения содержания родия от 1 до 13 масс.% параметр решётки диоксида церия уменьшается (рис. 7в), что свидетельствует о встраивании ионов родия в решетку CeO₂ с формированием твердого раствора замещения $Rh_xCe_{1-x}O_{2-\delta}$. Однако, большое различие в величинах ионных ионных радиусов Rh^{3+} и Ce⁴⁺ не коррелирует с относительно небольшим изменением параметра решетки CeO₂. Это указывает на то, что только небольшая часть ионов Rh^{3+} встраивается в объем CeO₂, тогда как основная часть родия локализуется на поверхности и в приповерхностной области частиц CeO₂ в виде высокодисперсных ионных форм.

Рисунок 7. Рентгенограммы образцов Rh/CeO₂ с различным содержанием родия (1-17 масс.%), прокаленных при 450°C (а), зависимость площади удельной поверхности образцов (б), параметра решетки (в) и размера OKP (г) фазы CeO₂ от количества родия в образце.

Как и для катализаторов Pt/CeO₂, помимо основных пиков, относящихся к расстояниям в CeO₂, на кривых PPA для катализаторов Rh/CeO₂ были обнаружены дополнительные пики, соответствующие расстояниям: 2.02, 3.01 и 3.19 Å (рис. 8a). Расстояние 2.02 Å относится к Rh-O в первой координационной сфере. Остальные расстояния были отнесены к связям Rh-O-Rh и Rh-O-Ce. Детальное исследование локальной структуры родия было проведено методом XAS. Показано, что спектры XANES (рис. 86) для Rh/CeO₂ и оксида Rh₂O₃ различаются, несмотря катализаторов на трехвалентный характер окисленного родия. Наибольшие отличия обнаружены для катализатора 1Rh-CeO₂. Это указывает на то, что в образце с содержанием 1 масс.% Rh формируются одиночные центры, тогда как при увеличении содержания родия появляются дополнительные кластерные формы RhO_x.

Рисунок 8. Кривые радиального распределения для катализаторов Rh/CeO₂, прокаленных при 450°C, и CeO₂ с размером кристаллитов ~5 нм (точки) (а). Данные XANES (б) и EXAFS (в) на Rh K-крае поглощения для образцов Rh/CeO₂, прокаленных при 450 °C.

Рисунок 9. Локальная структура (a) оксида CeRh₂O₅ и (б) структурной модели кластеров RhO_x на поверхности CeO₂, использованная для моделирования экспериментальных данных EXAFS.

Поскольку для катализаторов Rh/CeO₂ было показано формирование твёрдого раствора замещения, было сделано предполажение о расположение ионов Rh³⁺ в позиции Ce⁴⁺ в кристаллической решётке. Расстояния 2.02, 3.01 и 3.19 Å, обнаруженные методом PPA, заметно короче, чем расстояния, характерные для структуры CeO₂. Было предложено, что при встраивании в позицию Ce⁴⁺ родий локально искажает решетку и формирует вокруг себя локальное окружение близкое к таковому в оксиде CeRh₂O₅ (рис. 9а). Предложенная модель кластерных форм RhO_x (рис. 9б) на поверхности CeO₂

использовалась для моделирования данных EXAFS Rh К-крае на поглощения (рис. 10, таблица 2). Можно уточненые видеть, что расстояния при моделировании данных EXAFS наблюдались на кривых РРА.

Рисунок 10. Сравнение экспериментальной (точки) и модельной (линия) k^3 -взвешанных функций $\chi(k)$ для Rh К-края поглощения (а) и их Фурье-образ (б) для катализаторов 5Rh-CeO₂, 8Rh-CeO₂ и 13Rh-CeO₂.

Таблица 2. Результаты моделирования EXAFS данных на Rh K-крае поглощения. В скобках приведены стандартные отклонения полученных величин в последнем знаке.

Образец	Тип рассеяния	R, Å	КЧ	σ^2	ΔE_0	S_{0}^{2}	$R_{\rm f}$
5Rh-CeO ₂	Rh-O	2.047 (2)	5.5 (1)	0.0040 (2)	-3.2 (4)	0.92	0.0055
	Rh-O-Rh	3.070(7)	1.9 (2)	0.0077 (7)			
	Rh-O-Ce	3.17 (2)	0.7 (3)	0.008 (2)			
8Rh-CeO ₂	Rh-O	2.047 (2)	5.4 (1)	0.0039 (2)			
	Rh-O-Rh	3.083 (4)	3.2 (2)	0.0079 (4)	-3.0 (3)	0.92	0.0058
	Rh-O-Ce	3.20(1)	1.1 (2)	0.007(1)			
13Rh-CeO2	Rh-O	2.036 (2)	5.6 (2)	0.0041 (3)			
	Rh-O-Rh	3.062 (8)	1.9 (3)	0.0074 (8)	-4.1 (4)	0.92	0.0118
	Rh-O-Ce	3.16(2)	0.6(1)	0.007 (2)			

R – межатомное расстояние, КЧ – координационное число, σ^2 – параметр Дебая-Уоллера.

По данным ТПВ температура поглощения H_2 уменьшается при появлении дополнительных кластеров RhO_x в составе катализатора, что может говорить о формировании более легкосвязанного кислорода в RhO_x в сравнении с одиночными формами. По данным TПР-CO основной пик выделения CO₂ для всех катализаторов наблюдался при температуре >100 °C и связан с восстановлением ионов родия, локализующихся в решетки CeO₂. Методом in situ PФA показано, что при нагреве в CO выше 100 °C происходит восстановление родия до металлического состояния, сопровождающееся резким ростом параметра решетки CeO₂. Это, как и в случае катализаторов Pt/CeO₂, связано с выходом кислорода из решетки CeO₂. Проведение последовательно циклов TПР-CO, реокисление в O₂ и TПР-CO показало обратимость системы при окислительно-восстановительных обработках.

Каталитические свойства катализаторов Rh/CeO₂ исследовались в реакции окисления CO. Показано, что увеличение содержания родия от 1 до 5 масс.% приводит к сдвигу кривой light-off в область меньших температур (рис. 11а). Дальнейшее увеличение содержания родия не приводило к улучшению каталитической активности, что можно объяснить встраиванием родия в разупорядочение в межблочных границах. Для сравнения каталитической активности катализаторов с разным содержанием активного компонента была осуществлена процедура «разбавления» катализатора 5Rh-CeO₂ чистым CeO₂ для достижения содержания родия ~ 1 масс.%. Показано, что образец 5*Rh-CeO₂ (после «разбавления»), содержащий кластерные формы RhO_x, и образец 1Rh-CeO₂, содержащий одиночные ионы, характеризуются близкой каталитической активностью в реакции окисления CO (рис. 11б).

Рисунок 11. Зависимость конверсии СО от температуры для CeO₂ (a) и серии катализаторов Rh/CeO₂, прокаленных при 450°C (a, б). Образец 5*Rh-CeO₂ получен смешиванием образца 5Rh-CeO₂ с диоксидом церия до содержания родия 1 масс.%

Таким образом, для катализаторов Rh/CeO_2 наличие прочных связей Rh-O-Rh в составе кластерных форм RhO_x не дает улучшения активности в низкотемпературном окислении CO в сравнении с одиночными формами родия. Это связано со способностью родия формировать стабильные оксидные соединения. Обратная ситуация показана для катализаторов Pt/CeO_2 , где наличие Pt-O-Pt связей с легкосвязанным кислородом в составе кластерных формах PtO_x обеспечивает низкотемпературную активность окисления CO в сравнении с прочносвязанными одиночными формами платины.

ЗАКЛЮЧЕНИЕ

1. Катализаторы Pt/CeO₂ (содержание платины – от 1 до 30 масс.%) и катализаторы Rh/CeO₂ (содержание с родия - от 1 до 17 масс.%), приготовленные методом соосаждения с последующим прокаливанием на воздухе при температурах 450-1000 °C, были исследованы набором структурных (рентгенография, ПЭМ, РРА), спектральных (РФЭС, КР, ХАЅ) и кинетических (ТПР, ТПВ) методов. Показано, что при температурах прокаливания 450 °C и 600 °C в изученных катализаторах формировались только высокодисперсные ионные формы платины и родия во всем диапазоне концентраций активного компонента. Диоксид церия представлял собой наночастицы полиэдрической формы размером менее 10 нм.

2. Исследование локальной структуры высокодисперсных форм платины и родия проводили с помощью методов радиального распределения атомов и рентгеновской спектроскопии поглощения. Для катализаторов Pt/CeO₂ и Rh/CeO₂ с содержанием активного компонента 1 масс.% установлено формирование одиночных ионов платины и родия. В случае катализатора Pt/CeO₂ ионы Pt²⁺ находятся в плоскоквадратной координации на грани (100) диоксида церия, а ионы Pt⁴⁺ расположены в позициях Ce⁴⁺ решетки CeO₂ в приповерхностной области частиц диоксида церия. Для катализатора Rh/CeO₂ активный компонент присутствует в виде ионов Rh³⁺ в позициях Ce⁴⁺ решетки CeO₂.

3. При содержании активного компонента более 1 масс.% наблюдалось появление кластерных форм PtO_x и RhO_x. Локальная структура кластеров PtO_x обладает схожими структурными фрагментами с оксидом Pt₃O₄. Для кластеров RhO_x установлено формирование локального окружения близкого к оксиду CeRh₂O₅.

4. Для всех изученных катализаторов Pt/CeO₂ обнаружена локализация одиночных и кластерных форм на поверхности и в приповерхностной области частиц диоксида церия. Для катализаторов Rh/CeO₂, основная доля родия

также локализуется на поверхности частиц CeO₂. При этом небольшая часть ионов родия встраивается в объем диоксида церия с формированием твердого раствора $Rh_xCe_{1-x}O_{2-\delta}$. При высоком содержании платины (20-30 масс.%) и родия (13-17 масс.%) в катализаторах наблюдается разупорядочение в межблочном пространстве частиц CeO₂, в котором локализуются кластерные формы PtO_x и RhO_x .

5. Методом рентгеновской дифракции в режиме in situ проведено исследование структурных трансформаций катализаторов Pt/CeO_2 и Rh/CeO_2 , содержащих кластерные формы PtO_x и RhO_x , в ходе окислительновосстановительных обработок. Показано, что восстановление в атмосфере CO при температуре выше 25 °C для катализатора Pt/CeO_2 и выше 100°C для катализатора Rh/CeO_2 приводит к формированию высокодисперсных металлических состояний активного компонента и выходу кислорода из решетки CeO_2 . Последующий нагрев в кислороде приводит к окислению металлических состояний с формированием высокодисперсных ионных форм платины и родия.

6. Показано, что высокодисперсные формы платины и родия в составе катализаторов Pt/CeO₂ и Rh/CeO₂ демонстрируют низкотемпературную каталитическую активность в реакции окисления CO. Для катализаторов Pt/CeO₂ наиболее активными в реакции окисления CO являются кластерные формы PtO_x, которые за счет быстрых окислительно-восстановительных переходов способны высвобождать реакционноспособный кислород при более низких температурах в сравнении с одиночными формами платины. В случае катализаторов Rh/CeO₂ одиночные и кластерные формы характеризуются близкой каталитической активностью.

Благодарности. Автор работы выражает глубокую благодарность научному руководителю к.х.н. Кардаш Татьяне Юрьевне за помощь в постановке цели и задач, обсуждение результатов и огромную поддержку в работе. Автор

благодарен заведующему группы исследования нанесенных металл-оксидных катализаторов д.х.н. Боронину Андрею Ивановичу за помощь в работе над диссертацией, за полезные замечания и работу над интерпретацией данных. Также автора выражает благодарность к.х.н. Стадниченко Андрею Ивановичу и к.х.н. Кибис Лидии Сергеевне за исследование образцов методом рентгеновской фотоэлектронной спектроскопии, за помощь в интерпретации результатов и их обсуждение; к.х.н. Славинской Елене Марковне за проведение экспериментов температурно-программируемому по восстановлению и каталитические измерения, а также за помощь в работе над диссертационной работой и советы, касающиеся данных каталитических измерений; к.х.н. Свинцицкому Дмитрию Антоновичу за помощь в проведении in situ экспериментов методом рентгеновской дифракции и обсуждение результатов; к.х.н. Стонкус Ольге Александровне за анализ образцов методом ПЭМ-ВР; к.ф.-м.н. Светличному Валерию Анатольевичу за анализ образцов методом спектроскопии комбинационного рассеяния; д.х.н. Ивановой Александре Степановне за синтез образцов. А также всему коллективу лаборатории структурных методов исследования и группы исследования нанесенных металл-оксидных катализаторов ИК СО РАН за поддержку и необходимую помощь в рабочем процессе.

ПУБЛИКАЦИИ ПО ТЕМЕ ДИССЕРТАЦИИ

1. <u>Derevyannikova E.A.</u> The structure and catalytic properties of Rh-doped CeO₂ catalysts / E.A. Derevyannikova, T.Y. Kardash, L.S. Kibis et al. // Physical Chemistry Chemical Physics. – 2017. – Vol. 19. – P. 31883-31897.

2. Kibis L.S. Redox and catalytic properties of $Rh_xCe_{1-x}O_{2-\delta}$ solid solution / L.S. Kibis, T.Y. Kardash, <u>E.A. Derevyannikova</u> et al. // The Journal of Physical Chemistry C. – 2017. – Vol. 121. – Nº 48. – P. 26925-26938.

3. <u>Derevyannikova E.A.</u> Structural insight into strong $Pt-CeO_2$ interaction: From single Pt atoms to PtO_x clusters / E.A. Derevyannikova, T.Y. Kardash, A.I.

Stadnichenko et al. // The Journal of Physical Chemistry C. – 2019. – Vol. 123. – No 2. – P. 1320-1334.

4. <u>Derevyannikova E.A.</u> Structure of $Pt_xCe_{1-x}O_{2-\delta}$ solid solutions / E.A. Derevyannikova, T.Y. Kardash, A.I. Stadnichenko et al. // Proceedings of IV International scientific school-conference for young scientists in memory of Professor L.N. Kurina – Tomsk, Russia, 2016. – P. 99.

5. <u>Derevyannikova E.A.</u> Synthesis, structure and stability of $Rh_xCe_{1-x}O_{2-\delta}$ solid solution – a model catalyst for CO oxidation / E.A. Derevyannikova, T.Y. Kardash, L.S. Kibis et al. // IV Scientific Conference dedicated to the 110th anniversary of Academician Georgii K. Boreskov: Abstracts – Novosibirsk, Russia, 2017. – P. 93.

6. <u>Деревянникова Е.А.</u> Структурные особенности стабилизации ионной формы Pd, Pt и Rh в структуре диоксида церия / Е.А. Деревянникова, Т.Ю. Кардаш, Л.С. Кибис и др. // III Российский конгресс по катализу «РОСКАТАЛИЗ»: тезисы докладов конгресса – Нижний Новгород, Россия, 2017. – С. 697-698.

7. <u>Derevyannikova E.A.</u> The local structure Pt-doped CeO₂ catalysts studied by PDF and EXAFS methods / E.A. Derevyannikova, T.Y. Kardash, A.I. Stadnichenko et al. // Catalyst Design: From Molecular to Industrial Level. 5th International School-Conference on Catalysis for Young Scientists: Abstracts – Moscow, Russia, 2018. – P. 64-65.

8. <u>Derevyannikova E.A.</u> Pair distribution function analysis of Pt-doped and Rhdoped cerium dioxide / E.A. Derevyannikova, T.Y. Kardash, L.S. Kibis et al. // Book of Abstracts. 3rd Fundamentals and applications of cerium dioxide in catalysis – Barcelona, Spain, 2018. – P-07.

9. <u>Derevyannikova E.A.</u> Local structure strong Pt–CeO₂ interaction studied by PDF and EXAFS methods / E.A. Derevyannikova, T.Y. Kardash, A.I. Stadnichenko et al. // School and Conference on Analysis of Diffraction Data in Real Space – Grenoble, France, 2019. – P.89

10. <u>Derevyannikova E.A.</u> Structural insight into strong Pt–CeO₂ interaction: From single Pt atoms to PtO_x clusters / E.A. Derevyannikova, T.Y. Kardash, A.I. Stadnichenko et al. // Catalysis without Borders: 14th European Congress on Catalysis: Book of Abstracts – Aachen, Germany, 2019. – A.3.168.

11. <u>Федорова Е.А.</u> IN-SITU исследования RED-OX превращений в Pt–CeO₂ нанокомпозитах / Е.А. Федорова, Т.Ю. Кардаш, А.И. Стадниченко и др. // Горячие точки химии твердого тела: от новых идей к новым материалам: 3-я Всеросс. конф. с междунар. участием, посв. 75-летию Института химии твердого тела и механохимии СО РАН: Тез. докл. – Новосибирск, Россия, 2019.

12. <u>Федорова Е.А.</u> Структурные особенности взаимодействия Rh с CeO₂ в катализаторах окисления CO / Е.А. Федорова, Т.Ю. Кардаш, Л.С. Кибис и др. // Методы исследования состава и структуры функциональных материалов (МИССФМ-3). 3-я Всероссийская конференция: Сборник тезисов докладов – Новосибирск, Россия, 2020. – С. 227-228.

ФЕДОРОВА Елизавета Александровна

ИССЛЕДОВАНИЕ ЛОКАЛЬНОЙ СТРУКТУРЫ ВЫСОКОДИСПЕРСНЫХ ФОРМ ПЛАТИНЫ И РОДИЯ В КАТАЛИЗАТОРАХ НА ОСНОВЕ ДИОКСИДА ЦЕРИЯ.

Автореф. дисс. на соискание учёной степени кандидата химических наук.

Подписано в печать 30.03.2021. Заказ № 10. Формат 60х84/16. Усл. печ. л. 1. Тираж 100 экз. Отпечатано в издательском отделе Института катализа СО РАН 630090, Новосибирск, пр-т Академика Лаврентьева, 5