Hydrocracking Vegetable Oil on Borate-Containing Catalysts: Effect of Nature of Support
Научная публикация
Общее |
Язык:
Английский,
Жанр:
Статья (Full article),
Статус опубликования:
Опубликована,
Оригинальность:
Переводная
|
Журнал |
Kinetics and Catalysis
ISSN: 0023-1584
, E-ISSN: 1608-3210
|
Вых. Данные |
Год: 2017,
Том: 58,
Номер: 5,
Страницы: 563-576
Страниц
: 14
DOI:
10.1134/S0023158417050032
|
Ключевые слова |
borate-containing aluminum oxide, borate-containing zirconium dioxide, one-stage hydrocracking, renewable diesel fuel, supported platinum catalysts, vegetable oil |
Авторы |
Chumachenko Yu.A.
1
,
Trenikhin M.V.
1,2
,
Talzi V.P.
1
,
Gulyaeva T.I.
1
,
Paukshtis E.A.
3
|
Организации |
1 |
Institute of Hydrocarbon Processing, Siberian Branch, Russian Academy of Sciences, Omsk, 644040 Russia
|
2 |
Omsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Omsk, 644024 Russia
|
3 |
Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090 Russia
|
|
The structure, texture, and acid properties of platinum catalysts on oxide (Al2O3, ZrO2, ZrO2–Al2O3) and borate-containing supports (B2O3–Al2O3, B2O3–ZrO2) are studied. The catalysts are tested in the process of hydrocracking sunflower-seed oil at 380°C, 4.0 MPa, and a weight stock feed rate of 1.0 h–1. It has been found that aluminum oxide (A) contains the γ-Al2O3 phase, zirconium dioxide (Z) includes 85 and 15 rel. % of the monoclinic (M) and tetragonal (T) phases, respectively, while zirconium dioxide with the addition of 2.5 wt % Al2O3 (ZA) comprises 14 and 86 rel. % of the M–ZrO2 and T–ZrO2 phases, respectively. The B2O3–Al2O3 (BA) and B2O3–ZrO2 (BZ) systems modified with boron oxide (20 wt %) are X-ray amorphous. A Pt/BA catalyst differs from a Pt/A catalyst, while a Pt/BZ catalyst has a larger specific surface area and acidity than Pt/Z and Pt/ZA catalysts and contains Bronsted acidic centers (BACs) along with Lewis
acidic centers (LACs). Only LACs are present on the surface of Pt/A, Pt/Z, and Pt/ZA catalysts. The LAC/BAC ratio in Pt/BA and Pt/BZ catalysts is 0.3 and 1.0, respectively. All the catalysts provide complete oil conversion to give C5+ hydrocarbons with a yield of 81.7–87.3 wt %. Pt/A catalyzes mainly decarboxylation and hydrogenation–dehydration reactions, while Pt/Z and Pt/ZA provide decarboxylation. The yield of diesel fraction reaches 71.8–73.9 wt % with an n-alkane content of 94.0–95.9 wt %. One-stage oil hydrocracking with the prevalence of hydrodecarbonylation and hydrogenation–dehydration reactions occurs on Pt/BA and Pt/BZ catalysts for 20 h to give the yield of the diesel fraction of at least 81.4 and 74.4 wt % and the total content of iso-alkanes and cycloalkanes of at least 28.3 and 60.7 wt %, respectively