Kinetics of Low-Temperature Steam Reforming of Propane in a Methane Excess on a Ni-Based Catalyst
Научная публикация
Общее |
Язык:
Английский,
Жанр:
Статья (Full article),
Статус опубликования:
Опубликована,
Оригинальность:
Переводная
|
Журнал |
Catalysis in Industry
ISSN: 2070-0504
, E-ISSN: 2070-0555
|
Вых. Данные |
Год: 2017,
Том: 9,
Номер: 2,
Страницы: 104-109
Страниц
: 6
DOI:
10.1134/S2070050417020118
|
Ключевые слова |
associated petroleum gas, kinetics of catalytic reactions, low-temperature steam reforming, low-temperature vapor conversion, methane, nickel catalyst, propane |
Авторы |
Uskov S. I.
1,2
,
Enikeeva L. V.
3,4
,
Potemkin D. I.
1,2
,
Belyaev V. D.
1,2
,
Snytnikov P. V.
1,2
,
Gubaidullin I. M.
3,4
,
Kirillov V. A.
1
,
Sobyanin V. A.
1
|
Организации |
1 |
Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
|
2 |
Novosibirsk State University, Novosibirsk, Russia
|
3 |
Institute of Petroleum Chemistry and Catalysis, Russian Academy of Sciences, Ufa, Russia
|
4 |
Ufa State Petroleum Technical University, Ufa, Russia
|
|
Информация о финансировании (2)
1
|
Федеральное агентство научных организаций России
|
0303-2016-0011
|
2
|
Министерство образования и науки Российской Федерации
|
СП-922.2016.1
|
Systematic studies were performed on low-temperature steam conversion or low-temperature
steam reforming (LTSR) of propane in an excess of methane on a Ni-based catalyst. The LTSR of the methane–propane
mixture is a two-stage process involving the irreversible steam conversion of propane into carbon
dioxide and hydrogen and reversible methanation of carbon dioxide. Above ~250°C, the methanation of
carbon dioxide is quasi-equilibrium. The rate of propane conversion during the LTSR of the methane–propane
mixture is first-order based on propane; its activation energy is ~120 kJ/mol and is almost independent
of the methane, carbon dioxide, hydrogen, and steam concentrations. This very simple macrokinetic scheme
allows us to correctly describe the experimental data and predict the temperature and flow rate of the mixture
at which complete conversion of propane is achieved.