Low-Temperature Steam Conversion of Natural Gas to Methane–Hydrogen Mixtures
Научная публикация
Общее |
Язык:
Английский,
Жанр:
Статья (Full article),
Статус опубликования:
Опубликована,
Оригинальность:
Переводная
|
Журнал |
Catalysis in Industry
ISSN: 2070-0504
, E-ISSN: 2070-0555
|
Вых. Данные |
Год: 2020,
Том: 12,
Номер: 3,
Страницы: 244–249
Страниц
: 6
DOI:
10.1134/S2070050420030101
|
Ключевые слова |
hydrogen; methane–hydrogen mixtures; natural gas; nickel catalyst; steam reforming |
Авторы |
Potemkin D.I.
1,2,3
,
Uskov S.I.
1,2
,
Gorlova A.M.
1,2
,
Kirillov V.A.
1,2
,
Shigarov A.B.
1
,
Brayko A.S.
1
,
Rogozhnikov V.N.
1,4
,
Snytnikov P.V.
1,2
,
Pechenkin A.A.
1,4
,
Belyaev V.D.
1,2
,
Pimenov A.A.
5
,
Sobyanin V.A.
1
|
Организации |
1 |
Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090 Russia
|
2 |
Novosibirsk State University, Novosibirsk, 630090 Russia
|
3 |
Novosibirsk State Technical University, Novosibirsk, 630087 Russia
|
4 |
Gubkin Russian State University of Oil and Gas, Moscow, 119991 Russia
|
5 |
Samara State Technical University, Samara, 443100 Russia
|
|
Информация о финансировании (1)
1
|
Министерство науки и высшего образования Российской Федерации
|
05.607.21.0311 (RFMEFI60719X0311) (АААА-А19-119121690060-0)
|
A thermodynamic analysis is performed of the patterns of steam conversion of natural gas at temperatures of 300–600°C, pressures of 0.1–4 MPa and H2O : C molar ratios of 0.8‒1.2. Under these conditions, the reaction product is methane–hydrogen mixtures with hydrogen concentrations of 10–30 vol %. A rise in temperature, molar ratio Н2О : С, and a decrease in pressure contribute to an increase in the concentration of hydrogen in the reaction products. The thermodynamic boundaries of the process with no carbonization of the catalyst are determined. Experiments are performed to obtain methane–hydrogen mixtures from methane with an output concentration of 15–35 vol % hydrogen on industrial Ni-CrOx-Al2O3 catalyst at 325–425°C, a H2O : C molar ratio of 0.8–1.0, and atmospheric pressure. It is shown that under these conditions, the process proceeds without the formation of carbon on the catalyst.