Thermochemical Study of CO2 Capture by Mesoporous Silica Gel Loaded with the Amino Acid Ionic Liquid 1-ethyl-3-methylimidazolium Glycinate
Научная публикация
Общая информация |
Язык:
Английский,
Жанр:
Статья (Full article),
Статус опубликования:
Опубликована,
Оригинальность:
Оригинальная
|
Журнал |
Microporous and Mesoporous Materials
ISSN: 1387-1811
, E-ISSN: 1873-3093
|
Вых. Данные |
Год: 2022,
Том: 341,
Номер статьи
: 112113,
Страниц
: 9
DOI:
10.1016/j.micromeso.2022.112113
|
Ключевые слова |
Carbon capture; carbon dioxide; Composite material; Ionic liquid; Silica gel |
Авторы |
Sheshkovas Andrey Z.
1,2
,
Veselovskaya Janna V.
1
,
Rogov Vladimir A.
1,2
,
Kozlov Denis V.
1
|
Организации |
1 |
Boreskov Institute of Catalysis SB RAS, Akademika Lavrentieva Av. 5, 630090, Novosibirsk, Russia
|
2 |
Novosibirsk State University, Pirogova Str. 1, 630090, Novosibirsk, Russia
|
|
Информация о финансировании (1)
1
|
Министерство науки и высшего образования Российской Федерации
|
0239-2021-0007
|
A series of composite CO2 sorbents were obtained by placing an amino acid ionic liquid (AAIL) 1-Ethyl-3-methylimidazolium glycine ([Emim][Gly]) into mesoporous silica gel using an impregnation method. The parameters of the porous structure for the silica support and composite sorbents were determined from nitrogen adsorption-desorption isotherms measured at 77 K. The morphology of the materials was studied using field-emission scanning electron microscopy. It was shown that at lower [Emim][Gly] loadings (<50 wt%), the sorption is fast and the dynamic CO2 sorption capacity of the material is proportional to the mass content of the AAIL. At higher [Emim][Gly] loadings (≥50 wt%), the rate of CO2 sorption by the AAIL decreases due to hindered mass transfer. An increase in CO2 concentration in the gas flow leads to a faster sorption and higher CO2 sorption capacity for the AAIL-containing composite. Meanwhile, the integral enthalpy of sorption decreases with increasing CO2 concentration, which can be explained by the greater contribution of physical adsorption/absorption processes to the total CO2 sorption capacity at higher CO2 concentrations. The most promising composite material (40 wt% [Emim][Gly]/SiO2) was tested in consecutive temperature-swing sorption-desorption cycles. It was demonstrated that lowering the regeneration temperature from 100 to 80 °C leads to a decrease in the dynamic sorption capacity of the material, but ensures its stability in the cyclic sorption-desorption process. © 2022 Elsevier Inc.