Conceptual Design of the "Fast Processes" Beamline at the SRF SKIF 4th Generation Synchrotron
Доклады на конференциях
Язык |
Английский |
Тип доклада |
Устный |
Конференция |
International Conference "Synchrotron and Free electron laser Radiation: generation and application"
13-17 июл. 2020
, Novosibirsk
|
Авторы |
Рубцов Иван Андреевич
1,2
,
Тен Константин Алексеевич
1
,
Прууэл Эдуард Рейнович
1
,
Кашкаров Алексей Олегович
1
,
Аракчеев Алексей Сергеевич
3
,
Толочко Борис Петрович
4
,
Анчаров Алексей Игоревич
4
,
Зубавичус Ян Витаутасович
2
,
Ракшун Яков Валерьевич
2,3
,
Золотарев Константин Владимирович
3
,
Мезенцев Николай Александрович
3
,
Шкаруба Виталий Аркадьевич
3
,
Требушинин Андрей Евгеньевич
3
,
Хомяков Ю. В.
3
,
Шехтман Лев Исаевич
3
,
Жуланов Владимир Викторович
3
,
Аульченко Владимир Михайлович
3
|
Организации |
1 |
Институт гидродинамики им. М.А. Лаврентьева СО РАН
|
2 |
Институт катализа им. Г.К. Борескова СО РАН
|
3 |
Институт ядерной физики имени Г.И. Будкера СО РАН
|
4 |
Институт химии твердого тела и механохимии СО РАН
|
|
“Fast Processes” is one out of six 1st priority beamlines that are planned for construction within the project SRF SKIF (Shared Research Facility “Siberian circular photon source") [1]. The beamline would include two independent instruments installed at a wiggler source, i.e., Dynamic processes and Plasma. The beamline is designed to meet a wide range of research and technological challenges related to processes occurring in nano- and microsecond timescales.
The current conceptual design of the beamline aims at a complex approach to structural studies of various objects relying on high-brightness synchrotron radiation beams. The beamline would implement X-ray diffraction, small-angle scattering, and radiography techniques with a high temporal resolution, with a typical delay between frames down to 2.8 ns and exposures of about 50 ps. The assortment of scientific problems to be solved at the beamline includes studies of detonation processes; impact of explosion and shock waves on structural materials; dynamic endurance and fracture emergence; influence of laser irradiation and plasma on a variety of substances. The aforementioned synchrotron-based techniques will allow us to track structural changes along the detonation and shock-wave front, detect the formation of nanoparticles from explosion products (e.g., nanodiamonds), and elucidate the phase composition and local structure of substances subjected to extreme dynamic impacts.
[1] http://srf-skif.ru