Sciact
  • EN
  • RU

On a Global Error Estimate in Long-Term Numerical Integration of Ordinary Differential Equations Full article

Journal Selcuk Journal of Applied Mathematics
ISSN: 1302-7980
Output data Year: 2001, Volume: 2, Number: 1, Pages: 27-46 Pages count : 20
Tags numerical solution of ODEs; Runge-Kutta methods; global error; chemical kinetic model
Authors Chumakov G.A. 1 , Chumakova N.A. 2
Affiliations
1 Sobolev Institute of Mathematics, SB RAS, Pr. Ak. Koptyuga 4, Novosibirsk, Russia
2 Boreskov Institute of Catalysis, SB RAS, Pr. Ak. Lavrentieva 5, Novosibirsk, Russia

Funding (1)

1 International Association for the Promotion of Co-operation with Scientists from the New Independent States of the Former Soviet Union 99-01882

Abstract: We describe an effective computational procedure of obtaining estimate for the global error in the long-term numerical integration with one-step embedded explicit Runge-Kutta methods applied to an ODE system. The paper relies on the existence of an asymptotic expansion for the global error. An example is given using a particular ODE system modeling the behavior of a heterogeneous catalytic reaction with complex dynamics.
Cite: Chumakov G.A. , Chumakova N.A.
On a Global Error Estimate in Long-Term Numerical Integration of Ordinary Differential Equations
Selcuk Journal of Applied Mathematics. 2001. V.2. N1. P.27-46. РИНЦ
Dates:
Submitted: Mar 6, 2001
Identifiers:
Elibrary: 21072835
Citing:
DB Citing
Elibrary 4