Modern ssNMR for Heterogeneous Catalysis Review
Journal |
Catalysis Today
ISSN: 0920-5861 , E-ISSN: 1873-4308 |
||||
---|---|---|---|---|---|
Output data | Year: 2017, Volume: 285, Pages: 179-193 Pages count : 15 DOI: 10.1016/j.cattod.2016.11.005 | ||||
Tags | Challenging nuclei, Dynamic nuclear polarization surface enhanced NMR spectroscopy, Heterogeneous catalysts, NMR crystallography, Solid state nuclear magnetic resonance, ssNMR | ||||
Authors |
|
||||
Affiliations |
|
Funding (1)
1 | Federal Agency for Scientific Organizations | V.44.1.17. (0303-2014-0003) |
Abstract:
This review is devoted to modern applications of solid state NMR (ssNMR) to the structural studies of heterogeneous catalysts. Recent developments of ssNMR combining high magnetic fields up to 23.5 T, high rotation frequencies up to 120 kHz, and the new software of spectra acquisition and processing coupled with quantum chemistry calculations allow unravel the 3D structure of active sites of the sophisticated structures, such as heterogeneous catalysts. Moreover, this opens a possibility of investigation of low sensibility nuclei that are generally assigned as inappropriate for NMR. Dynamic Nuclear Polarization Surface Enhanced NMR Spectroscopy (DNP-SENS) is another powerful technique extending NMR application for surface feature investigation. Combination of modern ssNMR (including DNP) and DFT calculations synthesize the most powerful approach (so called NMR crystallography) of structural research of catalysts which is demonstrated on several remarkable application examples on challenging nuclei.
Cite:
Lapina O.B.
Modern ssNMR for Heterogeneous Catalysis
Catalysis Today. 2017. V.285. P.179-193. DOI: 10.1016/j.cattod.2016.11.005 WOS Scopus РИНЦ ANCAN OpenAlex
Modern ssNMR for Heterogeneous Catalysis
Catalysis Today. 2017. V.285. P.179-193. DOI: 10.1016/j.cattod.2016.11.005 WOS Scopus РИНЦ ANCAN OpenAlex
Dates:
Submitted: | Sep 8, 2016 |
Accepted: | Nov 6, 2016 |
Published print: | May 1, 2017 |
Published online: | Nov 18, 2017 |
Identifiers:
Web of science: | WOS:000397684500017 |
Scopus: | 2-s2.0-85006999249 |
Elibrary: | 29470649 |
Chemical Abstracts: | 2016:1921457 |
Chemical Abstracts (print): | 166:319958 |
OpenAlex: | W2552835671 |