Identification of a Deleterious Phase in Photocatalyst Based on Cd1 − xZnxS/Zn(OH)2 by Simulated XRD Patterns Full article
Journal |
Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials
ISSN: 2052-5192 , E-ISSN: 2052-5206 |
||||
---|---|---|---|---|---|
Output data | Year: 2017, Volume: 73, Number: 3, Pages: 360-368 Pages count : 9 DOI: 10.1107/S2052520617001664 | ||||
Tags | Debye simulation, hydrozincite, layered zinc hydroxide, sheet-like particles, turbostratic disorder | ||||
Authors |
|
||||
Affiliations |
|
Funding (2)
1 | Russian Foundation for Basic Research | 15-33-20458 |
2 | Federal Agency for Scientific Organizations | 0303-2016-0002 |
Abstract:
The X-ray diffraction (XRD) pattern of a deleterious phase in the photocatalyst based on Cd1 − xZnxS/Zn(OH)2 contains two relatively intense asymmetric peaks with d-spacings of 2.72 and 1.56 Å. Very small diffraction peaks with interplanar distances of (d) ≃ 8.01, 5.40, 4.09, 3.15, 2.49 and 1.35 Å are characteristic of this phase but not always observed. To identify this phase, the XRD patterns for sheet-like hydroxide β-Zn(OH)2 and sheet-like hydrozincite Zn5(CO3)2(OH)6 as well as for turbostratic hydrozincite were simulated. It is shown that the XRD pattern calculated on the basis of the last model gives the best correspondence with experimental data. Distances between layers in the turbostratically disordered hydrozincite fluctuate around d ≃ 8.01 Å. This average layer-to-layer distance is significantly higher than the interlayer distance 6.77 Å in the ordered Zn5(CO3)2(OH)6 probably due to a deficiency of CO32− anions, excess OH− and the presence of water molecules in the interlayers. It is shown by variable-temperature XRD and thermogravimetric analysis (TGA) that the nanocrystalline turbostratic nonstoichiometric hydrozincite-like phase is quite thermostable. It decomposes into ZnO in air above 473 K.
Cite:
Cherepanova S.
, Markovskaya D.
, Kozlova E.
Identification of a Deleterious Phase in Photocatalyst Based on Cd1 − xZnxS/Zn(OH)2 by Simulated XRD Patterns
Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials. 2017. V.73. N3. P.360-368. DOI: 10.1107/S2052520617001664 WOS Scopus РИНЦ ANCAN PMID OpenAlex
Identification of a Deleterious Phase in Photocatalyst Based on Cd1 − xZnxS/Zn(OH)2 by Simulated XRD Patterns
Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials. 2017. V.73. N3. P.360-368. DOI: 10.1107/S2052520617001664 WOS Scopus РИНЦ ANCAN PMID OpenAlex
Dates:
Submitted: | Oct 12, 2016 |
Accepted: | Jan 31, 2017 |
Published online: | May 12, 2017 |
Published print: | Jun 1, 2017 |
Identifiers:
Web of science: | WOS:000402518500005 |
Scopus: | 2-s2.0-85020269489 |
Elibrary: | 31016256 |
Chemical Abstracts: | 2017:936395 |
Chemical Abstracts (print): | 168:102864 |
PMID: | 28572546 |
OpenAlex: | W2613394250 |