Sciact
  • EN
  • RU

Design of Micro-Shell Cu–Al Porous Ceramometals as Catalysts for the Water–Gas Shift Reaction Full article

Journal RSC Advances
ISSN: 2046-2069
Output data Year: 2017, Volume: 7, Number: 67, Pages: 42443-42454 Pages count : 12 DOI: 10.1039/C7RA06672D
Tags X-RAY PHOTOELECTRON; OXIDES; SPECTROSCOPY; MECHANISMS; REDUCTION; OXIDATION; METHANOL; COBALT; XPS
Authors Tikhov S. 1 , Minyukova T. 1 , Valeev K. 1 , Cherepanova S. 1 , Salanov A. 1 , Kaichev V. 1,2 , Saraev A. 1,2 , Andreev A. 1 , Lapina O. 1,2 , Sadykov V. 1,2
Affiliations
1 Boreskov Institute of Catalysis SB RAS, Lavrentieva Ave., 5, 630090 Novosibirsk, Russia
2 Novosibirsk State University, Pirogova Str., 2, 630090 Novosibirsk, Russia

Funding (1)

1 European Commission 604296 FP7-NMP-2013-LARGE-7 BIOGO

Abstract: XRD, NMR, SEM with mapping, and XPS were used to examine the structure and microstructure of porous ceramometals, CuAlO/CuAl, synthesized by mechanochemical alloying of a mixture of Cu + Al (Cu : Al ¼ 87 : 13 wt%) followed by hydrothermal treatment and heat treatment in air. The egg-shell nature of the microstructure was revealed: the metallic cores consisting of copper and aluminum alloys are surrounded by the oxide matrix containing copper oxides and X-ray amorphous mixed oxides of copper and aluminum. Catalytic activity of ceramometals in the water–gas shift reaction (WGSR) estimated for their fine fractions at 240 C and expressed as efficient first-order rate constants is lower than that of a CuZnAl oxide catalyst due to the lower (approximately by an order of magnitude) specific surface area of the ceramometals. The specific activity of ceramometals expressed as the specific rate constant related to the unit surface area of metallic copper exceeds that for the CuZnAl oxide catalyst and correlates with the content of crystallized intermetallics. Mechanical, textural and thermophysical properties of ceramometals were assessed. The presence of ultramacropores with sizes up to tens of microns was shown to be typical for ceramometals. As a result, the activity of granulated ceramometal catalysts in the WGSR, due to a high diffusion permeability, is comparable with that of granulated CuZnAl oxide. A mild leaching substantially increases the activity of cermet granules.
Cite: Tikhov S. , Minyukova T. , Valeev K. , Cherepanova S. , Salanov A. , Kaichev V. , Saraev A. , Andreev A. , Lapina O. , Sadykov V.
Design of Micro-Shell Cu–Al Porous Ceramometals as Catalysts for the Water–Gas Shift Reaction
RSC Advances. 2017. V.7. N67. P.42443-42454. DOI: 10.1039/C7RA06672D WOS Scopus РИНЦ AN OpenAlex
Files: Full text from publisher
Dates:
Submitted: Jun 15, 2017
Accepted: Aug 24, 2017
Published online: Sep 1, 2017
Identifiers:
Web of science: WOS:000409147500056
Scopus: 2-s2.0-85028942000
Elibrary: 31067345
Chemical Abstracts: 2017:1448753
OpenAlex: W2751657237
Citing:
DB Citing
Web of science 10
Scopus 12
Elibrary 16
OpenAlex 10
Altmetrics: