Sciact
  • EN
  • RU

Grain Boundary Mediated Hydriding Phase Transformations in Individual Polycrystalline Metal Nanoparticles Full article

Journal Nature Communications
ISSN: 2041-1723
Output data Year: 2017, Volume: 8, Number: 1, Article number : 1084, Pages count : 10 DOI: 10.1038/s41467-017-00879-9
Tags molecular-dynamics simulation; scanning-electron-microscope; nanocrystalline palladium; hydrogen absorption; EBSD; visualization; lithographyde; formation; segregation; diffraction
Authors Alekseeva Svetlana 1 , Bastos da Silva Fanta Alice 2 , Iandolo Beniamino 2,5 , Antosiewicz Tomasz J. 1,3 , Nugroho Ferry Anggoro Ardy 1 , Wagner Jakob B. 2 , Burrows Andrew 2 , Zhdanov Vladimir P. 1,4 , Langhammer Christoph 1
Affiliations
1 Department of Physics, Chalmers University of Technology, Göteborg 412 96, Sweden
2 Center for Electron Nanoscopy, Technical University of Denmark, Fysikvej, 2800 Kgs Lyngby, Denmark
3 Centre of New Technologies, University of Warsaw, Banacha 2c, Warsaw 02-097, Poland
4 Boreskov Institute of Catalysis, Russian Academy of Sciences, Novosibirsk 630090, Russia
5 Department of Microtechnology and Nanotechnology, Technical University of Denmark, Ørsteds Pl., 2800 Kgs Lyngby, Denmark

Funding (5)

1 Federal Agency for Scientific Organizations 0303-2016-0001
2 Knut and Alice Wallenberg Foundation 2015.0057
3 European Commission 678941 ERC-StG-2015 SINCAT
4 Stiftelsen för strategisk forskning RMA11-0037
5 European Commission 609405 FP7-PEOPLE-2013-COFUND - Marie-Curie Action

Abstract: Grain boundaries separate crystallites in solids and influence material properties, as widely documented for bulk materials. In nanomaterials, however, investigations of grain boundaries are very challenging and just beginning. Here, we report the systematic mapping of the role of grain boundaries in the hydrogenation phase transformation in individual Pd nanoparticles. Employing multichannel single-particle plasmonic nanospectroscopy, we observe large variation in particle-specific hydride-formation pressure, which is absent in hydride decomposition. Transmission Kikuchi diffraction suggests direct correlation between length and type of grain boundaries and hydride-formation pressure. This correlation is consistent with tensile lattice strain induced by hydrogen localized near grain boundaries as the dominant factor controlling the phase transition during hydrogen absorption. In contrast, such correlation is absent for hydride decomposition, suggesting a different phase-transition pathway. In a wider context, our experimental setup represents a powerful platform to unravel microstructure–function correlations at the individual-nanoparticle level.
Cite: Alekseeva S. , Bastos da Silva Fanta A. , Iandolo B. , Antosiewicz T.J. , Nugroho F.A.A. , Wagner J.B. , Burrows A. , Zhdanov V.P. , Langhammer C.
Grain Boundary Mediated Hydriding Phase Transformations in Individual Polycrystalline Metal Nanoparticles
Nature Communications. 2017. V.8. N1. 1084 :1-10. DOI: 10.1038/s41467-017-00879-9 WOS Scopus РИНЦ ANCAN PMID OpenAlex
Files: Full text from publisher
Dates:
Submitted: Apr 10, 2017
Accepted: Aug 2, 2017
Published online: Oct 20, 2017
Published print: Dec 1, 2017
Identifiers:
Web of science: WOS:000413353500033
Scopus: 2-s2.0-85032218047
Elibrary: 31153153
Chemical Abstracts: 2018:898415
Chemical Abstracts (print): 175:271228
PMID: 29057929
OpenAlex: W2766396963
Citing:
DB Citing
Web of science 54
Scopus 56
Elibrary 53
OpenAlex 62
Altmetrics: