Sciact
  • EN
  • RU

Reversibility of Asphaltene Aggregation As Revealed by Magnetic Resonance Imaging in Situ Full article

Journal Energy and Fuels
ISSN: 0887-0624 , E-ISSN: 1520-5029
Output data Year: 2017, Volume: 31, Number: 10, Pages: 10639-10647 Pages count : 9 DOI: 10.1021/acs.energyfuels.7b01755
Tags ELECTRON-SPIN-RESONANCE; CRUDE-OIL; ORGANIC-SOLVENTS; PRECIPITATION; DEPOSITION; MODEL; FLOCCULATION; TEMPERATURE; STABILITY; HEAVY
Authors Morozov Evgeny V. 1,2,3 , Martyanov Oleg N. 3,4
Affiliations
1 Institute of Chemistry and Chemical Technology, Siberian Branch of the Russian Academy of Sciences, Akademgorodok 50/24, Krasnoyarsk 660036, Russia
2 Kirensky Institute of Physics, Siberian Branch of the Russian Academy of Sciences, Akademgorodok 50/38, Krasnoyarsk 660036, Russia
3 Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, Pr. Ak. Lavrentieva 5, Novosibirsk 630090, Russia
4 Novosibirsk State University, Pirogova str. 2, Novosibirsk 630090, Russia

Funding (1)

1 Russian Science Foundation 15-19-00119

Abstract: Aggregation of asphaltenes followed by precipitation presents severe problems for existing technologies in the production, recovery, and processing of heavy oils. Better understanding of asphaltene behavior behind the processes of their precipitation and dissolution is vital to address this issue. While investigating the inhomogeneity of different oil systems, the reversibility of the asphaltene aggregation process initiated by flocculant in either asphaltene solution in toluene or crude heavy oil was revealed and investigated using magnetic resonance imaging methods. It was found that the inhomogeneous distribution of the flocculant initiates local spatial-selective asphaltene aggregation registered in a thin layer around the flocculant/oil sample interface. The local excess of flocculant concentration over the threshold of asphaltene precipitation onset is a driving force of this process. As the flocculant diffuses into the volume of the sample, a decrease of the asphaltene flocculated area is observed until it disappears when the equilibrium composition throughout the whole volume of the system is achieved. Depending on the overall flocculant concentration, the asphaltene aggregation may not be reversible and could be followed by subsequent precipitation of the asphaltene aggregates. The similarity of the phenomena observed for the model asphaltene solutions and crude heavy oil samples was established. Partial mechanical stirring of the multicomponent system comprising flocculant and oil or asphaltene solution does not prevent the formation of the local zones with increased concentration of asphaltene aggregates; those sizes evolve depending on the flocculant concentration. The results obtained in this work are consistent with the generally accepted concept of asphaltene precipitation reversibility depending on the system composition and are compatible with the observations obtained by other methods. The approach presented can provide deeper insight into the asphaltene precipitation reversibility issue and can facilitate the understanding of asphaltene behavior in heavy oils.
Cite: Morozov E.V. , Martyanov O.N.
Reversibility of Asphaltene Aggregation As Revealed by Magnetic Resonance Imaging in Situ
Energy and Fuels. 2017. V.31. N10. P.10639-10647. DOI: 10.1021/acs.energyfuels.7b01755 WOS Scopus РИНЦ AN OpenAlex
Dates:
Submitted: Jun 20, 2017
Accepted: Sep 6, 2017
Published online: Sep 27, 2017
Published print: Oct 19, 2017
Identifiers:
Web of science: WOS:000413710300033
Scopus: 2-s2.0-85031943438
Elibrary: 31065212
Chemical Abstracts: 2017:1488132
OpenAlex: W2754870158
Citing:
DB Citing
Web of science 12
Scopus 12
Elibrary 18
OpenAlex 14
Altmetrics: