Influence of Nanoparticles Size on XRD Patterns for Small Monodisperse Nanoparticles of Cu0 and TiO2 Anatase Full article
Journal |
Industrial and Engineering Chemistry Research
ISSN: 0888-5885 , E-ISSN: 1520-5045 |
||||||
---|---|---|---|---|---|---|---|
Output data | Year: 2018, Volume: 57, Number: 7, Pages: 2526-2536 Pages count : 11 DOI: 10.1021/acs.iecr.7b04480 | ||||||
Tags | TITANIUM-DIOXIDE NANOPARTICLES; DEBYE FUNCTION-ANALYSIS; PHOTOCATALYTIC DEGRADATION; COPPER NANOPARTICLES; DOPED TIO2; PERFORMANCE; PARAMETERS; SURFACES; EQUATION; COMPLEX | ||||||
Authors |
|
||||||
Affiliations |
|
Funding (1)
1 | Russian Foundation for Basic Research | 15-08-01936 |
Abstract:
The effect of nanoparticle size and structure on XRD and SAXS patterns was investigated using modeling with the Debye scattering equation for a series of nanoparticles (NP) with the positions of atoms kept according to the bulk lattice and after structure relaxation. The purpose of research was to determine if the changes in XRD peak positions for NP are entirely due to the well-known effects of lattice parameter change or if additional effects can arise from the size itself. It was found that for very small NPs with sizes below 5 nm, the size itself influences the XRD patterns. This effect can be caused by interference fringes and is not taken into account when considering XRD patterns in standard software. The research demonstrates that new methods for XRD pattern treatment of very small nanoparticles should be developed.
Cite:
Vorontsov A.V.
, Tsybulya S.V.
Influence of Nanoparticles Size on XRD Patterns for Small Monodisperse Nanoparticles of Cu0 and TiO2 Anatase
Industrial and Engineering Chemistry Research. 2018. V.57. N7. P.2526-2536. DOI: 10.1021/acs.iecr.7b04480 WOS Scopus РИНЦ AN OpenAlex
Influence of Nanoparticles Size on XRD Patterns for Small Monodisperse Nanoparticles of Cu0 and TiO2 Anatase
Industrial and Engineering Chemistry Research. 2018. V.57. N7. P.2526-2536. DOI: 10.1021/acs.iecr.7b04480 WOS Scopus РИНЦ AN OpenAlex
Dates:
Submitted: | Oct 31, 2017 |
Accepted: | Feb 5, 2018 |
Published online: | Feb 12, 2018 |
Published print: | Feb 21, 2018 |
Identifiers:
Web of science: | WOS:000426143500009 |
Scopus: | 2-s2.0-85042612864 |
Elibrary: | 35535368 |
Chemical Abstracts: | 2018:223961 |
OpenAlex: | W2785867923 |