Sciact
  • EN
  • RU

Adsorption of Molecular Oxygen on the Ag(111) Surface: A Combined Temperature-Programmed Desorption and Scanning Tunneling Microscopy Study Full article

Journal Journal of Chemical Physics
ISSN: 0021-9606 , E-ISSN: 1089-7690
Output data Year: 2018, Volume: 148, Number: 24, Article number : 244702, Pages count : 6 DOI: 10.1063/1.5037169
Tags Thermal-Decomposition; Atomic Oxygen; Oxide-Film; Silver; Chemisorption; Epoxidation; Transition; Ethylene; Ag2O; XPS
Authors Andryushechkin B.V. 1 , Shevlyuga V.M. 1 , Pavlova T.V. 1 , Zhidomirov G.M. 1,2 , Eltsov K.N. 1
Affiliations
1 Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
2 Faculty of Physics, National Research University Higher School of Economics, 20 Myasnitskaya St., 101000 Moscow, Russia

Funding (1)

1 Russian Science Foundation 16-12-10546

Abstract: The adsorption of O2 on Ag(111) between 300 and 500 K has been studied with temperature programmed desorption (TPD) and scanning tunneling microscopy (STM). At the first stage of adsorption, the disordered local oxide phase (commonly looking in STM as an array of black spots) is formed on the surface irrespective of the substrate temperature. The maximum concentration of black spots was found to be ≈0.11 ML, which corresponds to an oxygen coverage of ≈0.66 ML. Taking into account that the nucleation of the Ag(111)-p(4 × 4)-O phase starts after the saturation of the disordered phase, one can conclude that its coverage is at least not less than 0.66 ML. The analysis of STM and TPD data shows that the thermos desorption peak (m/e = 32) at 570 K is related exclusively to the decomposition n of the p(4×4)phase,while the local oxide phase does not contribute to desorption.
Cite: Andryushechkin B.V. , Shevlyuga V.M. , Pavlova T.V. , Zhidomirov G.M. , Eltsov K.N.
Adsorption of Molecular Oxygen on the Ag(111) Surface: A Combined Temperature-Programmed Desorption and Scanning Tunneling Microscopy Study
Journal of Chemical Physics. 2018. V.148. N24. 244702 :1-6. DOI: 10.1063/1.5037169 WOS Scopus РИНЦ ANCAN OpenAlex
Dates:
Submitted: Apr 21, 2018
Accepted: Jun 11, 2018
Published online: Jun 26, 2018
Published print: Jun 28, 2018
Identifiers:
Web of science: WOS:000437190300075
Scopus: 2-s2.0-85049346966
Elibrary: 35755830
Chemical Abstracts: 2018:1197299
Chemical Abstracts (print): 169:289749
OpenAlex: W2810003287
Citing:
DB Citing
Web of science 18
Scopus 19
OpenAlex 20
Altmetrics: