Sciact
  • EN
  • RU

Stability Problem of Canard-Cycles on a Finite Interval Full article

Conference 8th International Conference of Numerical Analysis and Applied Mathematics
19-25 Sep 2010 , Rhodes
Source ICNAAM 2010: International Conference of Numerical Analysis and Applied Mathematics 2010
Compilation, 2010. ISBN 978-0-7354-0834-0.
Journal AIP Conference Proceedings
ISSN: 0094-243X , E-ISSN: 1551-7616
Output data Year: 2010, Volume: 1281, Pages: 2181-2183 Pages count : 3 DOI: 10.1063/1.3498402
Tags canard solution, chemical kinetics, nonlinear systems, numerical simulation, stability
Authors Chumakov Gennadii A. 1 , Chumakova Nataliya A. 2 , Lashina Elena A. 2
Affiliations
1 Sobolev Institute of Mathematics, Novosibirsk, Russia
2 Boreskov Institute of Catalysis, Novosibirsk, Russia

Abstract: A detailed study of two-variable mathematical model of a heterogeneous catalytic reaction is presented with special attention to the stability problem of canard-cycles on a finite interval. Our analysis of the global error behavior in a long-time numerical integration shows that a high sensitive dependence on the initial conditions appears due to the existence of a shower-type bundle of trajectories which is formed by stable and unstable canard solutions.
Cite: Chumakov G.A. , Chumakova N.A. , Lashina E.A.
Stability Problem of Canard-Cycles on a Finite Interval
In compilation ICNAAM 2010: International Conference of Numerical Analysis and Applied Mathematics 2010. 2010. – C.2181-2183. – ISBN 978-0-7354-0834-0. DOI: 10.1063/1.3498402 WOS Scopus РИНЦ ANCAN OpenAlex
Dates:
Published print: Sep 30, 2010
Identifiers:
Web of science: WOS:000289661501203
Scopus: 2-s2.0-79954512474
Elibrary: 16981906
Chemical Abstracts: 2010:1178039
Chemical Abstracts (print): 154:51497
OpenAlex: W2025481574
Citing:
DB Citing
Web of science 1
Scopus 1
Elibrary 1
OpenAlex 1
Altmetrics: