Sciact
  • EN
  • RU

Metal–Polymer Hybrid Nanomaterials for Plasmonic Ultrafast Hydrogen Detection Full article

Journal Nature Materials
ISSN: 1476-1122 , E-ISSN: 1476-4660
Output data Year: 2019, Volume: 18, Number: 5, Pages: 489-495 Pages count : 7 DOI: 10.1038/s41563-019-0325-4
Tags TOTAL-ENERGY CALCULATIONS; Pd NANOCRYSTALS; PALLADIUM; SENSORS; STORAGE; THERMODYNAMICS; SELECTIVITY; HYSTERESIS; ARRAYS; SIZE
Authors Nugroho Ferry A.A. 1 , Darmadi Iwan 1 , Cusinato Lucy 1 , Susarrey-Arce Arturo 1 , Schreuders Herman 2 , Bannenberg Lars J. 2 , da Silva Fanta Alice Bastos 3 , Kadkhodazadeh Shima 3 , Wagner Jakob B. 3 , Antosiewicz Tomasz J. 1,4 , Hellman Anders 1 , Zhdanov Vladimir P. 1,5 , Dam Bernard 2 , Langhammer Christoph 1
Affiliations
1 Department of Physics, Chalmers University of Technology, Göteborg, Sweden
2 Department of Chemical Engineering, Delft University of Technology, Delft, the Netherlands
3 Center for Electron Nanoscopy, Technical University of Denmark, Kongens Lyngby, Denmark
4 Faculty of Physics, University of Warsaw, Warsaw, Poland
5 Boreskov Institute of Catalysis, Russian Academy of Sciences, Novosibirsk, Russia

Funding (3)

1 Stiftelsen för strategisk forskning RMA15-0052
2 Knut and Alice Wallenberg Foundation 2016.0210
3 National Science Center 2017/25/B/ST3/00744

Abstract: Hydrogen–air mixtures are highly flammable. Hydrogen sensors are therefore of paramount importance for timely leak detection during handling. However, existing solutions do not meet the stringent performance targets set by stakeholders, while deactivation due to poisoning, for example by carbon monoxide, is a widely unsolved problem. Here we present a plasmonic metal–polymer hybrid nanomaterial concept, where the polymer coating reduces the apparent activation energy for hydrogen transport into and out of the plasmonic nanoparticles, while deactivation resistance is provided via a tailored tandem polymer membrane. In concert with an optimized volume-to-surface ratio of the signal transducer uniquely offered by nanoparticles, this enables subsecond sensor response times. Simultaneously, hydrogen sorption hysteresis is suppressed, sensor limit of detection is enhanced, and sensor operation in demanding chemical environments is enabled, without signs of long-term deactivation. In a wider perspective, our work suggests strategies for next-generation optical gas sensors with functionalities optimized by hybrid material engineering.
Cite: Nugroho F.A.A. , Darmadi I. , Cusinato L. , Susarrey-Arce A. , Schreuders H. , Bannenberg L.J. , da Silva Fanta A.B. , Kadkhodazadeh S. , Wagner J.B. , Antosiewicz T.J. , Hellman A. , Zhdanov V.P. , Dam B. , Langhammer C.
Metal–Polymer Hybrid Nanomaterials for Plasmonic Ultrafast Hydrogen Detection
Nature Materials. 2019. V.18. N5. P.489-495. DOI: 10.1038/s41563-019-0325-4 WOS Scopus РИНЦ AN PMID OpenAlex
Files: Full text from publisher
Dates:
Submitted: Jul 19, 2018
Accepted: Feb 21, 2019
Published online: Apr 1, 2019
Published print: May 1, 2019
Identifiers:
Web of science: WOS:000465199900021
Scopus: 2-s2.0-85063770778
Elibrary: 38723631
Chemical Abstracts: 2019:868844
PMID: 30936481
OpenAlex: W2932081749
Citing:
DB Citing
Scopus 284
Web of science 276
Elibrary 248
OpenAlex 300
Altmetrics: