Vacuum-Tight Ceramic Composite Materials Based on Alumina Modified with Multi-Walled Carbon Nanotubes Full article
Journal |
Materials Science and Engineering B: Solid-State Materials for Advanced Technology (Materials Science and Engineering B-Advanced Functional Solid-State Materials)
ISSN: 0921-5107 |
||||||||
---|---|---|---|---|---|---|---|---|---|
Output data | Year: 2020, Volume: 254, Article number : 114508, Pages count : 10 DOI: 10.1016/j.mseb.2020.114508 | ||||||||
Tags | ceramic-matrix composites; Al2O3; carbon nanotube; electrical conductivity; vacuum-tight materials | ||||||||
Authors |
|
||||||||
Affiliations |
|
Funding (2)
1 | Federal Agency for Scientific Organizations | 0303-2016-0004 |
2 | Federal Agency for Scientific Organizations | 0301-2016-0021 (АААА-А17-117030310277-6) |
Abstract:
We develop the method of production of conductive vacuum-tight ceramics based on Al2O3 modified by multiwall carbon nanotubes (MWCNTs) at extremely low their content. The method is based on the use of nanopowders of α-Al2O3 combined with application of highly efficient distribution of MWCNTs on the surface of the initial oxide particles, provided by using ultrasonicated MWCNT suspensions stabilized with surfactant. The usage of surfactant destructing of MWCNT agglomerates of structure results in the elimination of cavities in ceramic matrix and improvement vacuum-tight properties of composites. The results can provide the optimization of production technology of strong vacuum-tight ceramics which are perspective for the production of conducting ceramics for accelerating tubes in pulse linear accelerators. Such materials would make it possible to avoid using high-voltage resistive voltage splitters and simultaneously suppress transverse resonance modes usually leading to transverse instability of intense beams in long accelerating structures.
Cite:
Shutilov R.A.
, Kuznetsov V.L.
, Moseenkov S.I.
, Karagedov G.R.
, Krasnov A.A.
, Logachev P.V.
Vacuum-Tight Ceramic Composite Materials Based on Alumina Modified with Multi-Walled Carbon Nanotubes
Materials Science and Engineering B: Solid-State Materials for Advanced Technology (Materials Science and Engineering B-Advanced Functional Solid-State Materials). 2020. V.254. 114508 :1-10. DOI: 10.1016/j.mseb.2020.114508 WOS Scopus РИНЦ AN OpenAlex
Vacuum-Tight Ceramic Composite Materials Based on Alumina Modified with Multi-Walled Carbon Nanotubes
Materials Science and Engineering B: Solid-State Materials for Advanced Technology (Materials Science and Engineering B-Advanced Functional Solid-State Materials). 2020. V.254. 114508 :1-10. DOI: 10.1016/j.mseb.2020.114508 WOS Scopus РИНЦ AN OpenAlex
Dates:
Submitted: | Jul 11, 2019 |
Accepted: | Jan 30, 2020 |
Published online: | Mar 2, 2020 |
Published print: | Apr 1, 2020 |
Identifiers:
Web of science: | WOS:000527371300004 |
Scopus: | 2-s2.0-85080051562 |
Elibrary: | 43256747 |
Chemical Abstracts: | 2020:428366 |
OpenAlex: | W3010235851 |