Visualization of Catalyst Dynamics and Development of a Practical Procedure to Study Complex “Cocktail”-Type Catalytic Systems Full article
Journal |
Faraday Discussions
ISSN: 1359-6640 , E-ISSN: 1364-5498 |
||||
---|---|---|---|---|---|
Output data | Year: 2021, Volume: 229, Pages: 458-474 Pages count : 17 DOI: 10.1039/c9fd00125e | ||||
Tags | AUXILIARY BASIS-SETS; PALLADIUM NANOPARTICLES; COORDINATION CHEMISTRY; MAGNETIC NANOPARTICLES; METAL NANOPARTICLES; GRAPHENE; SURFACE; FUNCTIONALIZATION; APPROXIMATION; NANOCRYSTALS | ||||
Authors |
|
||||
Affiliations |
|
Funding (1)
1 | Russian Science Foundation | 19-73-20124 (АААА-А19-119040490082-8) |
Abstract:
The ability to distinguish molecular catalysis from nanoscale catalysis provides a key to success in the field of catalyst development, particularly for the transition to sustainable economies. Complex evolution of catalyst precursors, facilitated by dynamic interconversions and leaching, makes the identification of catalytically active forms an independent task, sometimes very difficult. We propose a simple method for in situ capturing of nanoparticles with carbon-coated grids directly from reaction mixtures. Application of this method to Mizoroki-Heck reaction allowed visualization of dynamic changes of the dominant form of palladium particles in reaction mixtures with homogeneous and heterogeneous catalyst precursors. Changes in the size and shape of palladium particles reflecting the progress of the catalytic chemical reaction were demonstrated. Detailed computational modeling was carried out to confirm the generality of this approach and its feasibility for different catalytic systems. The computational models revealed strong binding of metal particles to the carbon coating comprising efficient binding sites. The approach was tested for trapping Cr, Co, Ag, Ni, Cu, Pd, Cd, Ir, Ru and Rh nanoparticles from solutions containing micromolar starting concentrations of the metal precursors. The developed approach provides a unique tool for studying intrinsic properties of catalytic systems.
Cite:
Galushko A.S.
, Gordeev E.G.
, Kashin A.S.
, Zubavichus Y.V.
, Ananikov V.P.
Visualization of Catalyst Dynamics and Development of a Practical Procedure to Study Complex “Cocktail”-Type Catalytic Systems
Faraday Discussions. 2021. V.229. P.458-474. DOI: 10.1039/c9fd00125e WOS Scopus РИНЦ AN PMID OpenAlex
Visualization of Catalyst Dynamics and Development of a Practical Procedure to Study Complex “Cocktail”-Type Catalytic Systems
Faraday Discussions. 2021. V.229. P.458-474. DOI: 10.1039/c9fd00125e WOS Scopus РИНЦ AN PMID OpenAlex
Dates:
Submitted: | Dec 3, 2019 |
Accepted: | Feb 5, 2020 |
Published online: | Feb 7, 2020 |
Published print: | May 1, 2021 |
Identifiers:
Web of science: | WOS:000656622300023 |
Scopus: | 2-s2.0-85107390740 |
Elibrary: | 46815793 |
Chemical Abstracts: | 2020:340603 |
PMID: | 33682864 |
OpenAlex: | W3004738902 |