Design of Catalytic Polyfunctional Nanomaterials for the Hydrogen Production Processes Full article
Journal |
Nanotechnologies in Russia
ISSN: 1995-0780 , E-ISSN: 1995-0799 |
||||||||
---|---|---|---|---|---|---|---|---|---|
Output data | Year: 2020, Volume: 15, Number: 3-6, Pages: 308-313 Pages count : 6 DOI: 10.1134/S1995078020030106 | ||||||||
Tags | Alumina; Aluminum alloys; Aluminum coatings; Aluminum corrosion; Aluminum hydroxide; Carbonization; Catalyst activity; Cerium oxide; Chromium alloys; Corrosion resistance; Corrosion resistant coatings; Deposition; Heat conduction; Hydrogen fuels; Hydrogen production; Iron alloys; Metal nanoparticles; Metals; Morphology; Steam reforming; SubstratesSynthesis (chemical); Ternary alloys; Thermal conductivity; Zirconium compounds | ||||||||
Authors |
|
||||||||
Affiliations |
|
Funding (1)
1 | Russian Foundation for Basic Research | 19-33-60008 (АААА-А19-119111890028-9) |
Abstract:
Abstract: The processes of hydrogen production from various types of fossil and renewable fuels are energy-intensive multi-route chemical reactions, and for their efficient implementation it is necessary to use selective and high-performance catalysts that combine high activity, thermal conductivity, and corrosion and thermal resistance. A general strategy for the design of catalytic systems for hydrogen production is outlined; it consists in the use of composite catalysts of the “metal nanoparticles/active oxide nanoparticles/structural oxide component/structured metal support” type; an approach for their directed synthesis is described. The structured metal support provides efficient heat removal or supply for exo- or endothermic reactions, possesses good hydrodynamic characteristics, and facilitates scale transition. The structural oxide component (aluminum oxide) provides thermal and corrosion resistance and a high specific surface area of the catalytic coating, as well as performing a protective function for the metal support. The active oxide component (mainly cerium–zirconium oxides) increases resistance to carbonization due to oxygen mobility and maintains a high dispersion of the active component due to its strong metal–support interaction. Metal nanoparticles 1–2 nm in size are involved in the activation of substrate molecules. FeCrAl alloy wire meshes, formed into cylindrical blocks of specified sizes, to be used as a heat-conducting substrate. By controlled annealing with the formation of a micron α-Al2O3 layer and subsequent deposition of a η-Al2O3 layer according to the Bayer method (through aluminum hydroxide), a structural layer of η-Al2O3 with a “breathing” needle morphology was deposited onto the FeCrAl alloy surface; then the catalytic active component was deposited onto this layer by impregnation and/or deposition. The efficiency of the proposed strategy is shown for Rh/Ce0.75Zr0.25O2 – δ–η-Al2O3/FeCrAl catalysts for methane tri-reforming and Cu–CeO2 – δ/η-Al2O3/FeCrAl catalysts for dimethoxymethane steam reforming. © 2020, Pleiades Publishing, Ltd.
Cite:
Potemkin D.I.
, Snytnikov P.V.
, Badmaev S.D.
, Uskov S.I.
, Gorlova A.M.
, Rogozhnikov V.N.
, Pechenkin A.A.
, Kulikov A.V.
, Shilov V.A.
, Ruban N.V.
, Belyaev V.D.
, Sobyanin V.A.
Design of Catalytic Polyfunctional Nanomaterials for the Hydrogen Production Processes
Nanotechnologies in Russia. 2020. V.15. N3-6. P.308-313. DOI: 10.1134/S1995078020030106 WOS Scopus РИНЦ ANCAN OpenAlex
Design of Catalytic Polyfunctional Nanomaterials for the Hydrogen Production Processes
Nanotechnologies in Russia. 2020. V.15. N3-6. P.308-313. DOI: 10.1134/S1995078020030106 WOS Scopus РИНЦ ANCAN OpenAlex
Original:
Потемкин Д.И.
, Снытников П.В.
, Бадмаев С.Д.
, Усков С.И.
, Горлова А.М.
, Рогожников В.Н.
, Печенкин А.А.
, Куликов А.В.
, Шилов В.А.
, Рубан Н.В.
, Беляев В.Д.
, Собянин В.А.
Дизайн каталитических полифункциональных наноматериалов для процессов получения водорода
Российские нанотехнологии. 2020. Т.15. №3. С.316-322. DOI: 10.1134/S1992722320030103 РИНЦ OpenAlex
Дизайн каталитических полифункциональных наноматериалов для процессов получения водорода
Российские нанотехнологии. 2020. Т.15. №3. С.316-322. DOI: 10.1134/S1992722320030103 РИНЦ OpenAlex
Dates:
Published print: | May 1, 2020 |
Submitted: | Jun 3, 2020 |
Accepted: | Aug 14, 2020 |
Published online: | Dec 28, 2020 |
Identifiers:
Web of science: | WOS:000603308200005 |
Scopus: | 2-s2.0-85098241092 |
Elibrary: | 45054528 |
Chemical Abstracts: | 2021:1091517 |
Chemical Abstracts (print): | 175:124605 |
OpenAlex: | W3115334110 |