Sciact
  • EN
  • RU

Comparative Study of the Photocatalytic Hydrogen Evolution over Cd1−xMnxS and CdS-β-Mn3O4-MnOOH Photocatalysts under Visible Light Full article

Journal Nanomaterials
, E-ISSN: 2079-4991
Output data Year: 2021, Volume: 11, Number: 2, Article number : 355, Pages count : 16 DOI: 10.3390/nano11020355
Tags solid solutions; Cd1−xMnxS; photocatalysis; hydrogen production; visible light
Authors Potapenko Ksenia O. 1 , Kurenkova Anna Yu. 1 , Bukhtiyarov Andrey V. 1 , Gerasimov Evgeny Yu. 1 , Cherepanova Svetlana V. 1 , Kozlova Ekaterina A. 1
Affiliations
1 Federal Research Center Boreskov Institute of Catalysis SB RAS

Funding (2)

1 Council for Grants of the President of the Russian Federation МД-79.2020.3
2 Ministry of Science and Higher Education of the Russian Federation 0239-2021-0011

Abstract: A series of solid solutions of cadmium and manganese sulfides, Cd1-xMnxS (x = 0–0.35), and composite photocatalysts, CdS-β-Mn3O4-MnOOH, were synthesized by precipitation with sodium sulfide from soluble cadmium and manganese salts with further hydrothermal treatment at 120 °C. The obtained photocatalysts were studied by the X-ray diffraction method (XRD), UV-vis diffuse reflectance spectroscopy, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and N2 low temperature adsorption. The photocatalysts were tested in hydrogen production using a Na2S/Na2SO3 aqueous solution under visible light (λ = 450 nm). It was shown for the first time that both kinds of photocatalysts possess high activity in hydrogen evolution under visible light. The solid solution Cd0.65Mn0.35S has an enhanced photocatalytic activity due to its valence and conduction band position tuning, whereas the CdS-β-Mn3O4-MnOOH (40–60 at% Mn) samples were active due to ternary heterojunction formation. Further, the composite CdS-β-Mn3O4-MnOOH photocatalyst had much higher stability in comparison to the Cd0.65Mn0.35S solid solution. The highest activity was 600 mmol g−1 h−1, and apparent quantum efficiency of 2.9% (λ = 450 nm) was possessed by the sample of CdS-β-Mn3O4-MnOOH (40 at% Mn).
Cite: Potapenko K.O. , Kurenkova A.Y. , Bukhtiyarov A.V. , Gerasimov E.Y. , Cherepanova S.V. , Kozlova E.A.
Comparative Study of the Photocatalytic Hydrogen Evolution over Cd1−xMnxS and CdS-β-Mn3O4-MnOOH Photocatalysts under Visible Light
Nanomaterials. 2021. V.11. N2. 355 :1-16. DOI: 10.3390/nano11020355 WOS Scopus РИНЦ AN PMID OpenAlex
Files: Full text from publisher
Dates:
Submitted: Dec 31, 2020
Accepted: Jan 21, 2021
Published print: Feb 1, 2021
Published online: Feb 1, 2021
Identifiers:
Web of science: WOS:000622941800001
Scopus: 2-s2.0-85100306097
Elibrary: 44961507
Chemical Abstracts: 2021:1082473
PMID: 33535500
OpenAlex: W3126351582
Citing:
DB Citing
Scopus 9
Web of science 8
Elibrary 10
OpenAlex 8
Altmetrics: