Fine Structure of Metal–Insulator Transition in EuO Resolved by Doping Engineering Full article
Journal |
Nanotechnology
ISSN: 0957-4484 , E-ISSN: 1361-6528 |
||||
---|---|---|---|---|---|
Output data | Year: 2018, Volume: 29, Number: 19, Article number : 195706, Pages count : 10 DOI: 10.1088/1361-6528/aab16e | ||||
Tags | metal-insulator transition, EuO, magnetic polaron, resistivity, XMCD | ||||
Authors |
|
||||
Affiliations |
|
Abstract:
Metal-insulator transitions (MITs) offer new functionalities for nanoelectronics. However, ongoing attempts to control the resistivity by external stimuli are hindered by strong coupling of spin, charge, orbital and lattice degrees of freedom. This difficulty presents a quest for materials which exhibit MIT caused by a single degree of freedom. In the archetypal ferromagnetic semiconductor EuO, magnetic orders dominate the MIT. Here we report a new approach to take doping under control in this material on the nanoscale: formation of oxygen vacancies is strongly suppressed to exhibit the highest MIT resistivity jump and magnetoresistance among thin films. The nature of the MIT is revealed in Gd doped films. The critical doping is determined to be more than an order of magnitude lower than in all previous studies. In lightly doped films, a remarkable thermal hysteresis in resistivity is discovered. It extends over 100 K in the paramagnetic phase reaching 3 orders of magnitude. In the warming mode, the MIT is shown to be a two-step process. The resistivity patterns are consistent with an active role of magnetic polarons-formation of a narrow band and its thermal destruction. High-temperature magnetic polaron effects include large negative magnetoresistance and ferromagnetic droplets revealed by x-ray magnetic circular dichroism. Our findings have wide-range implications for the understanding of strongly correlated oxides and establish fundamental benchmarks to guide theoretical models of the MIT.
Cite:
Averyanov D.V.
, Parfenov O.E.
, Tokmachev A.M.
, Karateev I.A.
, Kondratev O.A.
, Taldenkov A.N.
, Platunov M.S.
, Wilhelm F.
, Rogalev A.
, Storchak V.G.
Fine Structure of Metal–Insulator Transition in EuO Resolved by Doping Engineering
Nanotechnology. 2018. V.29. N19. 195706 :1-10. DOI: 10.1088/1361-6528/aab16e WOS Scopus РИНЦ ANCAN OpenAlex
Fine Structure of Metal–Insulator Transition in EuO Resolved by Doping Engineering
Nanotechnology. 2018. V.29. N19. 195706 :1-10. DOI: 10.1088/1361-6528/aab16e WOS Scopus РИНЦ ANCAN OpenAlex
Dates:
Submitted: | Jan 9, 2018 |
Accepted: | Feb 22, 2018 |
Published print: | Mar 16, 2018 |
Published online: | Mar 16, 2018 |
Identifiers:
Web of science: | WOS:000427651700002 |
Scopus: | 2-s2.0-85044025917 |
Elibrary: | 35495708 |
Chemical Abstracts: | 2018:2233396 |
Chemical Abstracts (print): | 176:175529 |
OpenAlex: | W2793591136 |