A Compact Highly Efficient Multichannel Reactor with a Fixed Catalyst Bed to Produce Hydrogen via Methanol Steam Reforming Full article
Journal |
Chemical Engineering Journal
ISSN: 1385-8947 , E-ISSN: 1873-3212 |
||||
---|---|---|---|---|---|
Output data | Year: 2013, Volume: 231, Pages: 497-501 Pages count : 5 DOI: 10.1016/j.cej.2013.07.068 | ||||
Tags | Catalytic multichannel reactor, Hydrogen production, Methanol steam reforming | ||||
Authors |
|
||||
Affiliations |
|
Abstract:
A new design of the multichannel reactor with a brass catalytic unit (52 mm diameter and 10 mm thick) containing 139 short channels (10 mm in length and 2 mm diameter) for the methanol steam reforming is presented. Compared to the conventional fixed-bed catalytic reactors, the multichannel reactor demonstrates low hydrodynamic resistance and low temperatures gradients. Thus, at the maximal flow rate, the pressure drop was only 0.025 torr while the temperature gradient along the catalytic unit axial section was only 0.8 °C/cm. The reactor is equipped with an integrated evaporation chamber and a special reagent feeding system to provide uniform flow distribution in all channels. A numerical simulation of the gas flow dynamics, performed with the Fluent 6.3 software package, showed that the maximum flow inhomogeneity in the channels was 0.47%.
The tests of the multichannel reactor on the methanol steam reforming showed that at 270 °C, the hydrogen production rate was 110.5 l/h at the methanol conversion 76.7% and the concentration of carbon monoxide in the output mixture 0.56 mol%.
Cite:
Gribovskiy A.G.
, Makarshin L.L.
, Andreev D.V.
, Klenov O.P.
, Parmon V.N.
A Compact Highly Efficient Multichannel Reactor with a Fixed Catalyst Bed to Produce Hydrogen via Methanol Steam Reforming
Chemical Engineering Journal. 2013. V.231. P.497-501. DOI: 10.1016/j.cej.2013.07.068 WOS Scopus РИНЦ ANCAN OpenAlex
A Compact Highly Efficient Multichannel Reactor with a Fixed Catalyst Bed to Produce Hydrogen via Methanol Steam Reforming
Chemical Engineering Journal. 2013. V.231. P.497-501. DOI: 10.1016/j.cej.2013.07.068 WOS Scopus РИНЦ ANCAN OpenAlex
Dates:
Submitted: | Mar 25, 2013 |
Accepted: | Jul 19, 2013 |
Published online: | Jul 26, 2013 |
Published print: | Sep 1, 2013 |
Identifiers:
Web of science: | WOS:000326767900057 |
Scopus: | 2-s2.0-84882669406 |
Elibrary: | 20449438 |
Chemical Abstracts: | 2013:1497506 |
Chemical Abstracts (print): | 159:580287 |
OpenAlex: | W1990919264 |