Superparamagnetic Blocking and Magnetic Interactions in Nanoferrihydrite Adsorbed on Biomineralized Nanorod-Shaped F3S4 Crystallites Full article
Journal |
Journal of Alloys and Compounds
ISSN: 0925-8388 , E-ISSN: 1873-4669 |
||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Output data | Year: 2022, Volume: 923, Article number : 166346, Pages count : 13 DOI: 10.1016/j.jallcom.2022.166346 | ||||||||||
Tags | Biomineralization; Superparamagnetic nanoparticles; Interparticle interactions; Iron sulfide; Ferrihydrite | ||||||||||
Authors |
|
||||||||||
Affiliations |
|
Funding (2)
1 | Ministry of Science and Higher Education of the Russian Federation | ГЗ-2021-2023 |
2 | Russian Science Foundation | 22-24-00601 (122011800330-5) |
Abstract:
A composite based on nanorod-shaped greigite (Fe3S4) crystallites with adsorbed ferrihydrite (Fe2O3 ‧ nH2O) nanoparticles has been synthesized. The synthesis has been performed by biomineralization of the bacterial wall of a sulfate-reducing Desulfovibrio sp. A2 bacteria. The phase composition of the synthesized composite has been investigated by X-ray powder and electron diffraction, as well as Fourier-transform infrared, extended X-ray absorption fine structure, and Mössbauer spectroscopy. The magnetic measurement data have shown that the sample under study contains two magnetic phases: multidomain nanorod-shaped greigite and ultrasmall ferrihydrite nanoparticles. The constant atomic fraction of the greigite crystalline phase in the range of 4–300 K (~20%) revealed by Mössbauer spectroscopy is indicative of a blocked magnetic moment of nanorod-shaped Fe3S4. It is shown that nanorod-shaped Fe3S4 crystallites are strongly magnetically bound with adsorbed Fe2O3 ‧ nH2O (Eint ~ 1200kB) nanoparticles. This significantly slows down the superparamagnetic relaxation of the magnetic moments of ferrihydrite nanoparticles. Therefore, the blocking temperature noticeably increases and attains, according to the Mössbauer spectroscopy data, a value of TB = 140 K (the magnetic measurements yield TB = 72 K). The processes of superparamagnetic blocking of the magnetic moments of ferrihydrite nanoparticles manifest themselves in the evolution of the magnetic properties of the investigated sample (a significant increase in the coercivity and remanent magnetization). In support of the Mössbauer spectroscopy data, a sufficiently high superparamagnetic blocking temperature has been established, which discloses the effect of magnetizing of ferrihydrite nanoparticles by coarser greigite formations, analogously to the effect of interparticle magnetic interactions.
Cite:
Knyazev Y.V.
, Ikkert O.P.
, Semenov S.V.
, Volochaev M.N.
, Molokeev M.S.
, Platunov M.S.
, Khramov E.V.
, Dubrovskiy A.A.
, Shestakov N.P.
, Smorodina E.D.
, Karnachuk O.V.
, Balaev D.A.
Superparamagnetic Blocking and Magnetic Interactions in Nanoferrihydrite Adsorbed on Biomineralized Nanorod-Shaped F3S4 Crystallites
Journal of Alloys and Compounds. 2022. V.923. 166346 :1-13. DOI: 10.1016/j.jallcom.2022.166346 WOS Scopus ANCAN OpenAlex publication_identifier_short.sciact_skif_identifier_type
Superparamagnetic Blocking and Magnetic Interactions in Nanoferrihydrite Adsorbed on Biomineralized Nanorod-Shaped F3S4 Crystallites
Journal of Alloys and Compounds. 2022. V.923. 166346 :1-13. DOI: 10.1016/j.jallcom.2022.166346 WOS Scopus ANCAN OpenAlex publication_identifier_short.sciact_skif_identifier_type
Dates:
Submitted: | May 26, 2022 |
Accepted: | Jul 17, 2022 |
Published print: | Jul 19, 2022 |
Published online: | Jul 19, 2022 |
Identifiers:
Web of science: | WOS:000861611400005 |
Scopus: | 2-s2.0-85134778668 |
Chemical Abstracts: | 2022:1940468 |
Chemical Abstracts (print): | 179:297595 |
OpenAlex: | W4285810596 |
publication_identifier.sciact_skif_identifier_type: | 1884 |