Localization of an Unstable Solution of a System of Three Nonlinear Ordinary Differential Equations with a Small Parameter Full article
| Journal | 
                                    Journal of Applied and Industrial Mathematics
                                     ISSN: 1990-4789 , E-ISSN: 1990-4797  | 
                            ||||||
|---|---|---|---|---|---|---|---|
| Output data | Year: 2022, Volume: 16, Number: 4, Pages: 606 - 620 Pages count : 15 DOI: 10.1134/S1990478922040032 | ||||||
| Tags | Andronov-Hopf bifurcation, nonlinear ordinary differential equatioin (ODE), ODE with small parameter, asymptotic expansion, Lyapunov function | ||||||
| Authors |         
                
     | 
                        ||||||
| Affiliations |     
  | 
                        
Funding (2)
| 1 | Ministry of Science and Higher Education of the Russian Federation | 0239-2021-0014 | 
| 2 | Ministry of Science and Higher Education of the Russian Federation | FWNF-2022-0005 | 
                            Abstract:
                            In the present paper, we study some nonlinear autonomous systems of three nonlinear ordinary differential equations (ODE) with small parameter μ such that two variables (x, y) are fast and the remaining variable z is slow. In the limit as μ → 0, from this “complete dynamical system” we obtain the “degenerate system,” which is included in a one-parameter family of two-dimensional subsystems of fast motions with parameter z in some interval. It is assumed that there exists a monotone function ρ(z) that, in the three-dimensional phase space of a complete dynamical system, defines a parametrization of some arc L of a slow curve consisting of the family of fixed points of the degenerate subsystems. Let L have two points of the Andronov–Hopf bifurcation in which some stable limit cycles arise and disappear in the
two-dimensional subsystems. These bifurcation points divide L into the three arcs; two arcs are stable, and the third arc between them is unstable. For the complete dynamical system, we prove the existence of a trajectory that is located as close as possible to both the stable and unstable branches of the slow curve L as μ tends to zero for values of z within a given interval.
                        
                    
                
                        Cite:
                                Chumakov G.A.
    ,        Chumakova N.A.
    
Localization of an Unstable Solution of a System of Three Nonlinear Ordinary Differential Equations with a Small Parameter
Journal of Applied and Industrial Mathematics. 2022. V.16. N4. P.606 - 620. DOI: 10.1134/S1990478922040032 Scopus РИНЦ OpenAlex
                                                                        Localization of an Unstable Solution of a System of Three Nonlinear Ordinary Differential Equations with a Small Parameter
Journal of Applied and Industrial Mathematics. 2022. V.16. N4. P.606 - 620. DOI: 10.1134/S1990478922040032 Scopus РИНЦ OpenAlex
                                Original:
                                        Чумаков Г.А.
    ,        Чумакова Н.А.
    
О локализации неустойчивого решения одной системы трёх нелинейных обыкновенных дифференциальных уравнений с малым параметром
Сибирский журнал индустриальной математики. 2022. Т.25. №4. С.221-238. DOI: 10.33048/SIBJIM.2022.25.417 РИНЦ
                                            
                    
                                            О локализации неустойчивого решения одной системы трёх нелинейных обыкновенных дифференциальных уравнений с малым параметром
Сибирский журнал индустриальной математики. 2022. Т.25. №4. С.221-238. DOI: 10.33048/SIBJIM.2022.25.417 РИНЦ
                            Dates:
                            
                                                                    
                        
                    
                    | Submitted: | Jul 15, 2022 | 
| Accepted: | Sep 29, 2022 | 
                        Identifiers:
                            
                    
                    
                                            | Scopus: | 2-s2.0-85150187806 | 
| Elibrary: | 50731353 | 
| OpenAlex: | W4323344661 | 
                            Citing:
                                
        
                        
                    
                                            
                    
                | DB | Citing | 
|---|---|
| Elibrary | 2 |