Controllable Synthesis of CuPc/N-rich Doped (001) TiO2 S-scheme Nanosheet Heterojunctions for Efficiently Wide-Visible Light-Driven CO2 Reduction Научная публикация
| Журнал | 
                                    Applied Surface Science
                                     ISSN: 0169-4332  | 
                            ||||||
|---|---|---|---|---|---|---|---|
| Вых. Данные | Год: 2023, Том: 623, Номер статьи : 157066, Страниц : 9 DOI: 10.1016/j.apsusc.2023.157066 | ||||||
| Ключевые слова | N-rich doped TiO2; copper phthalocyanine modification; S-scheme charge transfer; visible-light photocatalysis; CO2 conversion | ||||||
| Авторы |         
                
     | 
                        ||||||
| Организации |     
  | 
                        
Информация о финансировании (4)
| 1 | National Natural Science Foundation of China | U2102211 | 
| 2 | National Natural Science Foundation of China | 22105066 | 
| 3 | National Natural Science Foundation of China | 42077343 | 
| 4 | Natural Science Foundation of Heilongjiang Province | YQ2022B009 | 
                            Реферат:
                            Inspired by natural photosynthesis, the rational design of efficient S-scheme heterojunctions holds promises for CO2 conversion by utilizing solar light. Herein, nitrogen-rich doped 001-exposed anatase nanosheets (NPT) have been designed and fabricated by post-treatment with NH3 at a high temperature of 600 °C to phosphate modified TiO2 firstly, and then controllably coupled with copper phthalocyanine (CuPc) via a hydroxyl-induced assembly process to construct a wide-visible-light responsive heterojunction towards CO2 conversion. The optimized CuPc/NPT heterojunction achieves a high production rate of CO (∼5 μmol/g/h) under visible light irradiation, with ∼9-fold enhancement compared with generally N-doped TiO2. Based on the experimental results mainly from photocurrent action spectra, electron paramagnetic resonance measurements, electrochemical reduction curves and in-situ diffuse reflectance infrared Fourier transform spectra, it is confirmed that the exceptional photoactivity is attributed to the N-rich doping for increasing visible-light absorption of TiO2, the effective S-scheme charge transfer from the closely-contacted CuPc/NPT heterojunction with wide visible-light absorption, and subsequently to the electron transfer from the Pc ligand to central metal Cu2+ with good catalytic function for CO2 reduction. This work provides feasible routes for the design and preparation of TiO2-based photocatalysts for solar-driven CO2 conversion.
                        
                    
                
                        Библиографическая ссылка:
                                Wu H.
    ,        Bian J.
    ,        Zhang Z.
    ,        Zhao Z.
    ,        Xu S.
    ,        Li Z.
    ,        Jiang N.
    ,        Kozlova E.
    ,        Hua X.
    ,        Jing L.
    
Controllable Synthesis of CuPc/N-rich Doped (001) TiO2 S-scheme Nanosheet Heterojunctions for Efficiently Wide-Visible Light-Driven CO2 Reduction
Applied Surface Science. 2023. V.623. 157066 :1-9. DOI: 10.1016/j.apsusc.2023.157066 WOS Scopus РИНЦ CAPlusCACA OpenAlex
                    
                    
                                            Controllable Synthesis of CuPc/N-rich Doped (001) TiO2 S-scheme Nanosheet Heterojunctions for Efficiently Wide-Visible Light-Driven CO2 Reduction
Applied Surface Science. 2023. V.623. 157066 :1-9. DOI: 10.1016/j.apsusc.2023.157066 WOS Scopus РИНЦ CAPlusCACA OpenAlex
                            Даты:
                            
                                                                    
                        
                    
                    | Поступила в редакцию: | 6 февр. 2023 г. | 
| Принята к публикации: | 16 мар. 2023 г. | 
| Опубликована online: | 21 мар. 2023 г. | 
| Опубликована в печати: | 30 июн. 2023 г. | 
                        Идентификаторы БД:
                            
                    
                    
                                            
                    
                                            
                    
                | Web of science: | WOS:000964965400001 | 
| Scopus: | 2-s2.0-85151056482 | 
| РИНЦ: | 54903582 | 
| Chemical Abstracts: | 2023:647103 | 
| Chemical Abstracts (print): | 2023:647103 | 182:414638 | 
| OpenAlex: | W4328137046 |