Sciact
  • EN
  • RU

Novel Biocompatible Magnetoelectric MnFe2O4 Core@BCZT Shell Nano–Hetero-Structures with Efficient Catalytic Performance Full article

Journal Small
ISSN: 1613-6810 , E-ISSN: 1613-6829
Output data Year: 2023, Volume: 19, Number: 42, Article number : 2302808, Pages count : 17 DOI: 10.1002/smll.202302808
Tags Ba0.85Ca0.15Zr0.1Ti0.9O3 catalysis; magnetoelectric effect; manganese ferrite; nano hetero-structures
Authors Chernozem Roman V. 1 , Urakova Alina O. 1 , Chernozem Polina V. 1 , Koptsev Danila A. 1 , Mukhortova Yulia R. 1,2 , Grubova Irina Yu. 1,2 , Wagner Dmitry V. 3 , Gerasimov Evgeny Yu. 4 , Surmeneva Maria A. 1,2 , Kholkin Andrei L. 1 , Surmenev Roman A. 1,2
Affiliations
1 Piezo- and Magnetoelectric Materials Research & Development Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia
2 Physical Materials Science and Composite Materials Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia
3 Faculty of Radiophysics, National Research Tomsk State University, Tomsk, 634050 Russia
4 Catalyst Research Department, Boreskov Institute of Catalysis, Lavrentieva ave. 5, Novosibirsk, 630090 Russia

Funding (2)

1 Ministry of Science and Higher Education of the Russian Federation 075-15-2021-588
2 Russian Science Foundation 23-23-00511 (123012000053-7)

Abstract: Magnetoelectric (ME) small-scale robotic devices attract great interest from the scientific community due to their unique properties for biomedical applications. Here, novel ME nano hetero-structures based on the biocompatible magnetostrictive MnFe2O4 (MFO) and ferroelectric Ba0.85Ca0.15Zr0.1Ti0.9O3 (BCZT) are developed solely via the hydrothermal method for the first time. An increase in the temperature and duration of the hydrothermal synthesis results in increasing the size, improving the purity, and inducing morphology changes of MFO nanoparticles (NPs). A successful formation of a thin epitaxial BCZT-shell with a 2–5 nm thickness is confirmed on the MFO NPs (77 ± 14 nm) preliminarily treated with oleic acid (OA) or polyvinylpyrrolidone (PVP), whereas no shell is revealed on the surface of pristine MFO NPs. High magnetization is revealed for the developed ME NPs based on PVP- and OA-functionalized MFO NPs (18.68 ± 0.13 and 20.74 ± 0.22 emu g−1, respectively). Moreover, ME NPs demonstrate 95% degradation of a model pollutant Rhodamine B within 2.5 h under an external AC magnetic field (150 mT, 100 Hz). Thus, the developed biocompatible core–shell ME NPs of MFO and BCZT can be considered as a promising tool for non-invasive biomedical applications, environmental remediation, and hydrogen generation for renewable energy sources.
Cite: Chernozem R.V. , Urakova A.O. , Chernozem P.V. , Koptsev D.A. , Mukhortova Y.R. , Grubova I.Y. , Wagner D.V. , Gerasimov E.Y. , Surmeneva M.A. , Kholkin A.L. , Surmenev R.A.
Novel Biocompatible Magnetoelectric MnFe2O4 Core@BCZT Shell Nano–Hetero-Structures with Efficient Catalytic Performance
Small. 2023. V.19. N42. 2302808 :1-17. DOI: 10.1002/smll.202302808 WOS Scopus РИНЦ AN PMID OpenAlex
Dates:
Submitted: Apr 4, 2023
Accepted: May 29, 2023
Published online: Jun 25, 2023
Published print: Oct 18, 2023
Identifiers:
Web of science: WOS:001013589700001
Scopus: 2-s2.0-85162846504
Elibrary: 55989212
Chemical Abstracts: 2023:1364634
PMID: 37357170
OpenAlex: W4381948119
Citing:
DB Citing
OpenAlex 16
Scopus 15
Elibrary 12
Web of science 16
Altmetrics: