Sciact
  • EN
  • RU

Miscoding and DNA Polymerase Stalling by Methoxyamine-Adducted Abasic Sites Full article

Journal Chemical Research in Toxicology
ISSN: 1520-5010
Output data Year: 2022, Volume: 35, Number: 2, Pages: 303-314 Pages count : 12 DOI: 10.1021/acs.chemrestox.1c00359
Authors Yudkina Anna V 1 , Zharkov Dmitry O 2,1
Affiliations
1 SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia
2 Novosibirsk State University, Novosibirsk 630090, Russia

Abstract: Apurinic/apyrimidinic (AP) sites appear in DNA spontaneously and as intermediates of base excision DNA repair. AP sites are noninstructive lesions: they strongly block DNA polymerases, and if bypassed, the nature of the incorporated dNMP is mostly guided by the interactions within the polymerase–DNA active site. Many DNA polymerases follow the “A-rule”, preferentially incorporating dAMP opposite to natural AP sites. Methoxyamine (MX), a small molecule, efficiently reacts with the aldehyde moiety of natural AP sites, thereby preventing their cleavage by APEX1, the major human AP endonuclease. MX is currently regarded as a possible sensitizer of cancer cells toward DNA-damaging drugs. To evaluate the mutagenic potential of MX, we have studied the utilization of various dNTPs by five DNA polymerases of different families encountering MX-AP adducts in the template in comparison with the natural aldehydic AP site. The Klenow fragment of Escherichia coli DNA polymerase I strictly followed the A-rule with both natural AP and MX-adducted AP sites. Phage RB69 DNA polymerase, a close relative of human DNA polymerases δ and ε, efficiently incorporated both dAMP and dGMP. DNA polymerase β mostly incorporated dAMP and dCMP, preferring dCMP opposite to the natural AP site and dAMP opposite to the MX-AP site, while DNA polymerase λ was selective for dGMP, apparently via the primer misalignment mechanism. Finally, translesion DNA polymerase κ also followed the A-rule for MX-AP and additionally incorporated dCMP opposite to a natural AP site. Overall, the MX-AP site, despite structural differences, was similar to the natural AP site in terms of the dNMP misincorporation preference but was bypassed less efficiently by all polymerases except for Pol κ.
Cite: Yudkina A.V. , Zharkov D.O.
Miscoding and DNA Polymerase Stalling by Methoxyamine-Adducted Abasic Sites
Chemical Research in Toxicology. 2022. V.35. N2. P.303-314. DOI: 10.1021/acs.chemrestox.1c00359 WOS Scopus РИНЦ ANCAN PMID OpenAlex
Dates:
Submitted: Oct 11, 2021
Published online: Jan 28, 2022
Published print: Feb 21, 2022
Identifiers:
Web of science: WOS:000766195200017
Scopus: 2-s2.0-85124009710
Elibrary: 48148034
Chemical Abstracts: 2022:215828
Chemical Abstracts (print): 178:107220
PMID: 35089032
OpenAlex: W4210369530
Citing:
DB Citing
OpenAlex 13
Web of science 12
Scopus 12
Altmetrics: