Integration of Exfoliated WS2 /Functionalized MWCNT Nanocomposites for NO2 Sensing Using Machine Learning for Response Prediction Научная публикация
Журнал |
IEEE Sensors Journal
ISSN: 1530-437X |
||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Вых. Данные | Год: 2024, Том: 24, Номер: 22, Страницы: 36366-36376 Страниц : 11 DOI: 10.1109/jsen.2024.3470069 | ||||||||||
Ключевые слова | carbon nanotubes, gas sensors, nitrogen dioxide, regression | ||||||||||
Авторы |
|
||||||||||
Организации |
|
Информация о финансировании (1)
1 | Министерство науки и высшего образования Российской Федерации (с 15 мая 2018) | FSUN-2023-0008 |
Реферат:
In order to manage the environment and perform noninvasive disease diagnostics, it is necessary to continuously identify harmful and highly toxic gases, such as nitrogen oxide (NO2). This study demonstrates how to design nanocomposites and build a cost-effective NO 2 gas sensor based on exfoliated tungsten disulphide and functionalized multi-walled carbon nanotubes as a highly efficient sensing material operating at room temperature in humid conditions. The composite sensor’s response under various humidity levels, ranging from 2% to 65%, as well as at different temperatures (25°C to 80°C), was studied. Scanning electron microscopy, Raman spectroscopy, transmission electron microscopy, and energy dispersive X-ray spectroscopy were used to analyze the sensing material. The composite-based sensor showed an improved response Δ R/R0 of 52% at room temperature for 50 ppm NO 2 with good selectivity to other gases (e.g. ammonia, methane, benzene, isobutene, hydrogen). The composite sensor exhibited a low detection limit of 1.39 ppm for NO 2 at room temperature. Furthering this advancement, we delve into the integration of machine learning, specifically the CatBoost regression model, with the NO 2 sensor. This integration elevates the sensor from a conventional passive detector to an advanced analytical system, significantly boosting its predictive accuracy and adaptability for real-time environmental monitoring and nuanced data interpretation, thereby opening new frontiers in sensor technology and applications in environmental monitoring and health diagnostics.
Библиографическая ссылка:
Kumar S.
, Kedam N.
, Maksimovskiy E.A.
, Ishchenko A.V.
, Larina T.V.
, Chesalov Y.A.
, Bannov A.G.
Integration of Exfoliated WS2 /Functionalized MWCNT Nanocomposites for NO2 Sensing Using Machine Learning for Response Prediction
IEEE Sensors Journal. 2024. V.24. N22. P.36366-36376. DOI: 10.1109/jsen.2024.3470069 WOS Scopus OpenAlex
Integration of Exfoliated WS2 /Functionalized MWCNT Nanocomposites for NO2 Sensing Using Machine Learning for Response Prediction
IEEE Sensors Journal. 2024. V.24. N22. P.36366-36376. DOI: 10.1109/jsen.2024.3470069 WOS Scopus OpenAlex
Даты:
Поступила в редакцию: | 29 июл. 2024 г. |
Принята к публикации: | 26 сент. 2024 г. |
Опубликована online: | 14 нояб. 2024 г. |
Опубликована в печати: | 15 нояб. 2024 г. |
Идентификаторы БД:
Web of science: | WOS:001355285600078 |
Scopus: | 2-s2.0-85206011420 |
OpenAlex: | W4403123523 |
Цитирование в БД:
Пока нет цитирований