Sciact
  • EN
  • RU

IrPtRu Electrocatalysts: Surface Composition and Nanostructural Enhancements for Efficient Oxygen Evolution in PEMEL Full article

Journal International Journal of Hydrogen Energy
ISSN: 0360-3199 , E-ISSN: 1879-3487
Output data Year: 2024, Volume: 110, Pages: 487-494 Pages count : 8 DOI: 10.1016/j.ijhydene.2025.02.244
Tags Electrocatalyst; Oxygen evolution reaction; Ir−based electrocatalyst; Surface composition; Nanostructure; Electrochemical performance; Nanoparticle synthesis; Electrocatalysis
Authors Moguchikh E.A. 1 , Pavlets A.S. 1 , Novomlinskaya I.A. 1 , Pankov I.V. 2 , Aydakov E.E. 3 , Kaichev V.V. 3 , Nikolskiy A.V. 4 , Kozakov A.T. 4 , Alekseenko D.V. 1 , Alekseenko A.A. 1
Affiliations
1 Faculty of Chemistry, Southern Federal University, 7 Zorge St., Rostov-on-Don, 344090, Russia
2 Research Institute of Physical Organic Chemistry, Southern Federal University, 194/2 Stachki St., Rostov-on-Don, 344090, Russia
3 Department of Catalysis Research, Boreskov Institute of Catalysis, Prospect Ac. Lavrentieva 5, Novosibirsk, 630090, Russia
4 Southern Federal University, Research Institute of Physics, 194 Stachki st., Rostov-on-Don, 344090, Russia

Funding (1)

1 Ministry of Science and Higher Education of the Russian Federation FENW-2023-0016

Abstract: Proton-exchange membrane electrolyzers (PEMELs) represent an efficient solution for converting water to “green” hydrogen. To enhance the profitability of PEMEL utilization, there is a need to reduce an iridium loading at the anode. In this study, we propose a simple one-pot wet synthesis for obtaining an IrPtRu catalyst with an iridium content of less than 60 wt%. The structure of the obtained trimetallic catalyst has thoroughly been investigated using various microscopy techniques (SEI, TEM, HRTEM, STEM, HAADF-STEM, and EDX). In addition, we have studied the surface chemical composition by XPS. The alloy catalyst is characterized by a uniform distribution of metal components, a narrow particle size dispersion, and a smaller nanoparticle size. The morphology of the synthesized material provides 1.9 times higher mass activity (A/gIr) in the oxygen evolution reaction at E = 1.53 V compared to the commercial iridium black, with an overpotential of 306 mV vs. 321 mV, respectively. Our study highlights the prospects of using trimetallic catalysts to enhance the efficiency of oxygen evolution reactions and reduce the consumption of rare metals.
Cite: Moguchikh E.A. , Pavlets A.S. , Novomlinskaya I.A. , Pankov I.V. , Aydakov E.E. , Kaichev V.V. , Nikolskiy A.V. , Kozakov A.T. , Alekseenko D.V. , Alekseenko A.A.
IrPtRu Electrocatalysts: Surface Composition and Nanostructural Enhancements for Efficient Oxygen Evolution in PEMEL
International Journal of Hydrogen Energy. 2024. V.110. P.487-494. DOI: 10.1016/j.ijhydene.2025.02.244 WOS Scopus OpenAlex
Dates:
Published print: Mar 18, 2024
Submitted: Dec 16, 2024
Accepted: Feb 14, 2025
Published online: Feb 20, 2025
Identifiers:
Web of science: WOS:001444190600001
Scopus: 2-s2.0-85217953994
OpenAlex: W4407778250
Citing: Пока нет цитирований
Altmetrics: