Sciact
  • EN
  • RU

Structure and Morphology Evolution of Silica-Modified Pseudoboehmite Aerogels During Heat Treatment Full article

Journal Journal of Solid State Chemistry
ISSN: 0022-4596 , E-ISSN: 1095-726X
Output data Year: 2016, Volume: 233, Pages: 294-302 Pages count : 9 DOI: 10.1016/j.jssc.2015.11.007
Tags 2D crystallites, Alumina, Debye Scattering Equation, Nanostructure, Pseudoboehmite, Supercritical drying
Authors Pakharukova V.P. 1,2,3 , Shalygin A.S. 1,2,3 , Gerasimov E.Yu. 1,2,3 , Tsybulya S.V. 1,2,3 , Martyanov O.N. 1,2,3
Affiliations
1 Boreskov Institute of Catalysis, SB RAS, Pr. Lavrentieva 5, 630090 Novosibirsk, Russia
2 Novosibirsk State University, Pirogova Street 2, 630090 Novosibirsk, Russia
3 Research and Educational Center for Energy Efficient Catalysis, Novosibirsk State University, Novosibirsk 630090, Russia

Funding (2)

1 Skolkovo Foundation 3 от 25.12.2014
2 Russian Science Foundation 14-23-00037

Abstract: Silica-modified pseudoboehmite aerogels (0, 10, 20 at % of Si) were prepared by sol-gel method followed by supercritical drying. The phase transformations, changes in structure and morphology upon calcination were thoroughly investigated by advanced X–Ray diffraction (XRD) techniques and high-resolution transmission electron microscopy (HRTEM). Obtained pseudoboehmite samples had specific nanostructure: ultrathin two-dimensional (2D) crystallites were loosely packed. The silica dopant drastically enhanced the crystallite anisotropy. Thus, the aerogel with Al:Si atomic ratio of 9:1 consisted of the pseudoboehmite nanosheets with thickness of one unit cell (average dimensions of 14.0х1.2x14.5 nm). The specific nanostructure caused remarkable features of experimental XRD patterns, including anisotropic peak broadening and appearance of forbidden reflection. Direct simulation of XRD patterns with using the Debye Scattering Equation allowed the size and morphology of pseudoboehmite crystallites to be determined. The silica addition strongly delayed formation of γ-alumina and further phase transformations upon calcinaton. Thermal stability of alumina was suggested to be affected by the particle morphology inherited from the pseudoboehmite precursor.
Cite: Pakharukova V.P. , Shalygin A.S. , Gerasimov E.Y. , Tsybulya S.V. , Martyanov O.N.
Structure and Morphology Evolution of Silica-Modified Pseudoboehmite Aerogels During Heat Treatment
Journal of Solid State Chemistry. 2016. V.233. P.294-302. DOI: 10.1016/j.jssc.2015.11.007 WOS Scopus РИНЦ ANCAN OpenAlex
Dates:
Submitted: Aug 18, 2015
Accepted: Nov 3, 2015
Published online: Nov 4, 2015
Published print: Jan 1, 2016
Identifiers:
Web of science: WOS:000369881200042
Scopus: 2-s2.0-84946545409
Elibrary: 24934779
Chemical Abstracts: 2015:1806910
Chemical Abstracts (print): 163:707453
OpenAlex: W1950576901
Citing:
DB Citing
Web of science 35
Scopus 38
Elibrary 35
OpenAlex 37
Altmetrics: