Sciact
  • EN
  • RU

Modeling the Chaotic Dynamics of Heterogeneous Catalytic Reactions with Fast, Intermediate, and Slow Variables Доклады на конференциях

Язык Английский
Тип доклада Устный
Конференция 9th International Conference on Mathematics in (bio)Chemical Kinetics and Engineering (MaCKiE-2015)
02-03 июл. 2015 , Ghent
Авторы Чумаков Геннадий Александрович 1,4 , Чумакова Любовь Г. 2 , Чумакова Наталия Алексеевна 3,4
Организации
1 Институт математики имени С.Л. Соболева Сибирского отделения Российской академии наук
2 The University of Edinburgh
3 Институт катализа им. Г.К. Борескова СО РАН
4 Новосибирский национальный исследовательский государственный университет

Реферат: We study a scheme that allows us to generate homoclinic chaos in the three-dimensional system with fast, intermediate, and slow variables. For generation of the chaotic dynamics we find the parameters of the model under which the system exhibits a Feigenbaum cascade of period-doubling bifurcations. Numerical simulations are used to demonstrate the different types of periodic and chaotic behavior predicted by the model. In particular, as some parameter is varied, the subharmonic period-doubling cascade leads to generation of a global attractor in the system.
Библиографическая ссылка: Chumakov G.A. , Chumakova L.G. , Chumakova N.A.
Modeling the Chaotic Dynamics of Heterogeneous Catalytic Reactions with Fast, Intermediate, and Slow Variables
9th International Conference on Mathematics in (bio)Chemical Kinetics and Engineering (MaCKiE-2015) 02-03 Jul 2015