Nickel Metal Nanoparticles as Anode Electrocatalysts for Highly Efficient Direct Borohydride Fuel Cells
Full article
Общее |
Language:
Английский,
Genre:
Full article,
Status:
Published,
Source type:
Original
|
Journal |
ACS Catalysis
ISSN: 2155-5435
|
Output data |
Year: 2019,
Volume: 9,
Number: 9,
Pages: 8520-8528
Pages count
: 9
DOI:
10.1021/acscatal.9b01616
|
Tags |
borohydride oxidation reaction (BOR), direct borohydride fuel cell (DBFC), nickel, platinum, palladium, density functional theory (DFT) |
Authors |
Oshchepkov Alexandr G.
1,2
,
Braesch Guillaume
1,3
,
Ould-Amara Salem
4
,
Rostamikia Gholamreza
5
,
Maranzana Gaël
4
,
Bonnefont Antoine
6
,
Papaefthimiou Vasiliki
1
,
Janik Michael J.
5
,
Chatenet Marian
3
,
Savinova Elena R.
1
|
Affiliations |
1 |
Institut de Chimie et Procedé s pour l ́ ’Energie, l’Environnement et la Sante, UMR 7515 CNRS-University of Strasbourg, 67087 Strasbourg Cedex, France
|
2 |
Boreskov Institute of Catalysis, 630090 Novosibirsk, Russia
|
3 |
University Grenoble Alpes, University Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI, 38000 Grenoble, France
|
4 |
Universitéde Lorraine, CNRS, LEMTA, UMR 7563, 54504 Vandoeuvre Les Nancy, France
|
5 |
Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
|
6 |
Institut de Chimie de Strasbourg, UMR 7177 CNRS-University of Strasbourg, 67070 Strasbourg, France
|
|
Funding (2)
1
|
Russian Science Foundation
|
18-73-00143
|
2
|
The French National Research Agency
|
MobiDiC ANR-16-CE05-0009-01
|
Developing cost-effective electrocatalysts for the multielectron borohydride oxidation reaction (BOR) is mandatory to deploy direct borohydride fuel cell (DBFC) systems to power portable and mobile devices. Currently, DBFCs rely on noble metal electrocatalysts and are not capable of fully profiting from the high theoretical DBFC voltage due to the competing hydrogen evolution reaction. Here, highly efficient noble metal-free BOR electrocatalysts based on carbon-supported Ni nanoparticles considerably outperform Pt/C at overpotentials as low as 0.2 V, both in half-cell and in unit fuel cell configurations. Precise control of the oxidation state of surface Ni determines the electrocatalytic activity. Density functional theory (DFT) calculations ascribe the significant activity of Ni compared to Pt, Pd, or Au to a better balance in the adsorption energies of Had, OHad, and B-containing reactive intermediates. These findings suggest design principles for efficient noble metal-free BOR electrocatalysts for DBFCs.