Sciact
  • EN
  • RU

On a Global Error Estimate in Long-Term Numerical Integration of Ordinary Differential Equations Научная публикация

Журнал Selcuk Journal of Applied Mathematics
ISSN: 1302-7980
Вых. Данные Год: 2001, Том: 2, Номер: 1, Страницы: 27-46 Страниц : 20
Ключевые слова numerical solution of ODEs; Runge-Kutta methods; global error; chemical kinetic model
Авторы Chumakov G.A. 1 , Chumakova N.A. 2
Организации
1 Sobolev Institute of Mathematics, SB RAS, Pr. Ak. Koptyuga 4, Novosibirsk, Russia
2 Boreskov Institute of Catalysis, SB RAS, Pr. Ak. Lavrentieva 5, Novosibirsk, Russia

Информация о финансировании (1)

1 International Association for the Promotion of Co-operation with Scientists from the New Independent States of the Former Soviet Union 99-01882

Реферат: We describe an effective computational procedure of obtaining estimate for the global error in the long-term numerical integration with one-step embedded explicit Runge-Kutta methods applied to an ODE system. The paper relies on the existence of an asymptotic expansion for the global error. An example is given using a particular ODE system modeling the behavior of a heterogeneous catalytic reaction with complex dynamics.
Библиографическая ссылка: Chumakov G.A. , Chumakova N.A.
On a Global Error Estimate in Long-Term Numerical Integration of Ordinary Differential Equations
Selcuk Journal of Applied Mathematics. 2001. V.2. N1. P.27-46. РИНЦ
Даты:
Поступила в редакцию: 6 мар. 2001 г.
Идентификаторы БД:
РИНЦ: 21072835
Цитирование в БД:
БД Цитирований
РИНЦ 4