Radiation Thermal Sintering Design of Oxygen Separation Membranes and Solid Oxide Fuel Cells Conference Abstracts
Conference |
Taiwan-Russia Symposium on Radiation Technology 19-23 Oct 2015 , Taipei |
||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Source | Taiwan-Russia Symposium on Radiation Technology Compilation, Hsinchu.2015. 38 c. |
||||||||||||||
Output data | Year: 2015, Pages: 11-12 Pages count : 2 | ||||||||||||||
Authors |
|
||||||||||||||
Affiliations |
|
Abstract:
Thin film solid oxide fuel cells (SOFC) operating in the intermediate temperature (IT) range are now considered as promising for distributed, mobile, standby or auxiliary power generation. Dense oxygen permselective MIEC ceramic membranes have a great potential for catalytic high-temperature processes including methane reforming into syngas. This work aimed at filling such a gap and providing verification of advanced sintering techniques for such an application.
Nanocrystalline complex oxides (GDC, YSZ, δ-Bi2O3 stabilized by Er or Y+Sm, rare-earth manganites, nickelates, ferrites, cobaltites and their solid solutions including those doped by Sr and/or Bi) were synthesized by modified Pechini and mechanical activation routes. Nanocomposites were prepared by ultrasonic dispersion. All the materials were characterized by XRD and TEM. As a porous metal substrate for composite anode or cathode, Ni-Al foam substrate was used along with NiO/YSZ plates. Functional layers were supported by slip casting or screen-printing. Radiation-thermal sintering (RTS) was carried out with temperature being varied in range of 900-1200 °C.
Fresh powders of GDC and BE are characterized by cubic fluorite structure. After RTS new phases were not revealed. Bi0.775Sm0.225O1.5 BYS sample transforms after sintering into cubic fluorite of Bi1.5Y0.5O3 type. complex perovskite oxides LFN and LFC (P) have rhombohedral structure, and GDC - fluorite-type (F) cubic structure. All samples sintered by RTS have a high mechanical strength even after RTS at 900°C. This fact is obviously explained by formation of crystal-type contacts in the bulk of composite. Conventional sintering provides a lower specific conductivity than RTS. This can be explained by a loss of oxygen from LFN at higher temperatures leading to conductivity decrease. For fuel cells with LSM-ScCeSZ and LSFN-YSZ cathodes typical power density at 700 °C was 0.5 Wt/cm2 with stable performance after 100 h testing.
Advanced sintering techniques based upon radiation-thermal sintering by e-beam action allow providing required density and consolidation of thin functional layers. Due to decreased temperature and duration of sintering as compared with conventional sintering methods, variation of phase composition, cracking and damage of metallic substrates were prevented.
Cite:
Sadykov V.A.
, Fedorova Y.E.
, Mezentseva N.V.
, Krieger T.A.
, Eremeev N.F.
, Arapova M.V.
, Ishchenko A.V.
, Salanov A.N.
, Pelipenko V.V.
, Muzykantov V.S.
, Ulikhin A.S.
, Uvarov N.F.
, Bobrenok O.F.
, Vlasov A.Y.
, Korobeynikov M.V.
, Bryazgin A.A.
, Arzhannikov A.V.
, Kalinin P.V.
, Smorygo O.L.
, Thumm M.K.A.
Radiation Thermal Sintering Design of Oxygen Separation Membranes and Solid Oxide Fuel Cells
In compilation Taiwan-Russia Symposium on Radiation Technology. 2015. – C.11-12.
Radiation Thermal Sintering Design of Oxygen Separation Membranes and Solid Oxide Fuel Cells
In compilation Taiwan-Russia Symposium on Radiation Technology. 2015. – C.11-12.
Identifiers:
No identifiers
Citing:
Пока нет цитирований