On the Feasibility of Bifunctional Hydrogen Oxidation on Ni and NiCu Surfaces Full article
Journal |
Electrochimica Acta
ISSN: 0013-4686 , E-ISSN: 1873-3859 |
||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Output data | Year: 2019, Volume: 305, Pages: 452-458 Pages count : 7 DOI: 10.1016/j.electacta.2019.03.030 | ||||||||||
Tags | Hydrogen oxidation reaction, Nickel and nickel copper, Bifunctional mechanism, DFT and Monte Carlo simulations, Kinetic modeling | ||||||||||
Authors |
|
||||||||||
Affiliations |
|
Funding (3)
1 | Russian Foundation for Basic Research | 17-53-150008 |
2 | National Scientific and Technical Research Council | |
3 | National Council for Scientific and Technological Development | 248817/2013-2 |
Abstract:
Nickel is a promising alternative to noble metal catalysts for hydrogen electrocatalysis in alkaline membrane fuel cells and electrolyzers. To boost its electrocatalytic activity, it is often associated with other metals, like Cu. In this work, we combine density functional theory (DFT), Monte Carlo calculations and kinetic modeling in order to shed light on the origin of the experimentally observed activity enhancement on bimetallic NiCu nanoparticles containing ca. 5% of Cu compared to pure Ni (Topics in Catalysis, 58, (2015), 1181–1192; J. Electroanal. Chem., 783, (2016), 146–151). It is shown that the bifunctional HOR mechanism, where H ad and OH ad recombine to form water, is not viable on the monometallic Ni electrode because of the strong hydrogen adsorption and the high activation energy barrier of the recombination reaction. On bimetallic NiCu surfaces, DFT calculations predict a significant weakening of H ad adsorption energy as well as a decrease of the activation barrier of the recombination reaction for ca. 50% Cu surface coverage. Monte Carlo simulations reveal that the surface of NiCu nanoparticles is enriched in Cu atoms even for a small (ca. 5%) Cu atomic fraction in the bulk. Kinetic modeling suggests that the experimental data for NiCu nanoparticles can be well reproduced either considering fast recombination step (bifunctional mechanism) or fast (10-fold enhancement compared to pure Ni) Volmer step (Heyrovsky-Volmer mechanism). © 2019 Elsevier Ltd
Cite:
Salmazo D.
, Juarez M.F.
, Oshchepkov A.G.
, Cherstiouk O.V.
, Bonnefont A.
, Shermukhamedov S.A.
, Nazmutdinov R.R.
, Schmickler W.
, Savinova E.R.
On the Feasibility of Bifunctional Hydrogen Oxidation on Ni and NiCu Surfaces
Electrochimica Acta. 2019. V.305. P.452-458. DOI: 10.1016/j.electacta.2019.03.030 WOS Scopus РИНЦ AN OpenAlex
On the Feasibility of Bifunctional Hydrogen Oxidation on Ni and NiCu Surfaces
Electrochimica Acta. 2019. V.305. P.452-458. DOI: 10.1016/j.electacta.2019.03.030 WOS Scopus РИНЦ AN OpenAlex
Dates:
Submitted: | Oct 31, 2018 |
Accepted: | Mar 4, 2019 |
Published online: | Mar 7, 2019 |
Published print: | May 10, 2019 |
Identifiers:
Web of science: | WOS:000462774000049 |
Scopus: | 2-s2.0-85063101730 |
Elibrary: | 38671514 |
Chemical Abstracts: | 2019:563757 |
OpenAlex: | W2921909752 |