Sciact
  • EN
  • RU

Electrophysical Properties of Composites Based on Polyethylene Modified with Multi-Walled Carbon Nanotubes with High Content of Fe–Co-Catalyst Full article

Journal Russian Journal of Applied Chemistry
ISSN: 1070-4272 , E-ISSN: 1608-3296
Output data Year: 2020, Volume: 93, Number: 4, Pages: 586–594 Pages count : 9 DOI: 10.1134/S107042722004014X
Tags multi-walled carbon nanotubes, ferromagnetic catalyst particles, polymer composites, mechanical mixing in the melt, gigahertz range, electromagnetic absorption
Authors Moseenkov S.I. 1 , Kuznetsov V.L. 1,2 , Zavorin A.V. 1,2 , Golubtsov G.V. 1,2 , Korovin E.Yu. 3 , Suslyaev V.I. 3 , Ishchenko A.V. 1 , Serkova A.N. 1 , Sergeenko D.I. 3 , Velikanov D.A. 4
Affiliations
1 Boreskov Institute of Catalysis of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090 Russia
2 Novosibirsk National Research State University, Novosibirsk, 630090 Russia
3 National Research Tomsk State University, Tomsk, 634050 Russia
4 Kirensky Institute of Physics of the Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, 660036 Russia

Funding (1)

1 Russian Foundation for Basic Research 17-73-20293

Abstract: The effect of the residual catalyst for the synthesis of multi-walled carbon nanotubes (MWCNTs) on the electrophysical properties of MWCNT–polyethylene composites produced by melt mechanical mixing was studied. The residual catalyst content was varied by changing the MWCNTs synthesis time. The nanotubes used in the work were characterized using transmission and scanning electron microscopy, atomic emission analysis, X-ray phase analysis, and magnetic permeability measurements. The structure of the synthesized composites was studied using optical and scanning electron microscopy. The dependences of the specific magnetization on the applied magnetic field, bulk electrical conductivity on the volumetric content of the filler in the composite, and the frequency dependences of the reflection, transmission, and absorption of electromagnetic radiation in the range 0.01–18 GHz were obtained. It was established that the obtained composites are characterized by a uniform distribution of nanotubes in the polymer matrix, and the dependence of the bulk electrical conductivity on the content of MWCNTs in the composite has a percolation character. Variation in the synthesis time of nanotubes allows producing MWCNTs with a high content of ferromagnetic particles, which are an alloy close in stoichiometry to the composition of the active component of the catalyst. It was shown that the use of composites modified with MWCNTs with a high content of residual catalyst is more effective for absorbing electromagnetic radiation due to an increase in their magnetic losses.
Cite: Moseenkov S.I. , Kuznetsov V.L. , Zavorin A.V. , Golubtsov G.V. , Korovin E.Y. , Suslyaev V.I. , Ishchenko A.V. , Serkova A.N. , Sergeenko D.I. , Velikanov D.A.
Electrophysical Properties of Composites Based on Polyethylene Modified with Multi-Walled Carbon Nanotubes with High Content of Fe–Co-Catalyst
Russian Journal of Applied Chemistry. 2020. V.93. N4. P.586–594. DOI: 10.1134/S107042722004014X WOS Scopus РИНЦ AN OpenAlex
Original: Мосеенков С.И. , Кузнецов В.Л. , Заворин А.В. , Голубцов Г.В. , Коровин Е.Ю. , Сусляев В.И. , Ищенко А.В. , Серкова А.Н. , Сергеенко Д.И. , Великанов Д.А.
Электрофизические свойства композитов на основе полиэтилена, модифицированного многослойными углеродными нанотрубками с высоким содержанием Fe-Co-катализатора
Журнал прикладной химии. 2020. Т.93. №4. С.581-590. DOI: 10.31857/S0044461820040131 РИНЦ OpenAlex
Dates:
Submitted: Apr 11, 2019
Accepted: Dec 14, 2019
Published print: Apr 1, 2020
Published online: May 22, 2020
Identifiers:
Web of science: WOS:000534889600014
Scopus: 2-s2.0-85085309072
Elibrary: 43288174
Chemical Abstracts: 2020:1011568
OpenAlex: W3026533186
Citing:
DB Citing
Scopus 2
Web of science 1
Elibrary 3
OpenAlex 3
Altmetrics: