Pd Single-Atom Sites on the Surface of PdAu Nanoparticles: A DFT-Based Topological Search for Suitable Compositions Full article
Journal |
Nanomaterials
, E-ISSN: 2079-4991 |
||||||
---|---|---|---|---|---|---|---|
Output data | Year: 2021, Volume: 11, Number: 1, Article number : 122, Pages count : 17 DOI: 10.3390/nano11010122 | ||||||
Tags | bimetallic nanoparticles; chemical ordering; density functional calculations; single-atom alloy catalysts | ||||||
Authors |
|
||||||
Affiliations |
|
Funding (6)
1 | European Cooperation in Science and Technology | CA18234 |
2 | Russian Science Foundation | 20-23-05002 |
3 | Ministry of Science and Innovation | PGC2018-093863-B-C22 |
4 | Ministry of Economic Affairs and Digital Transformation | MDM-2017-0767 |
5 | Ministry of Education and Vocational Training | PRX17/00348 |
6 | Government of Catalonia | 2017SGR13 |
Abstract:
Structure of model bimetallic PdAu nanoparticles is analyzed aiming to find Pd:Au ratios optimal for existence of Pd1 single-atom surface sites inside outer Au atomic shell. The analysis is performed using density-functional theory (DFT) calculations and topological approach based on DFT-parameterized topological energy expression. The number of the surface Pd1 sites in the absence of adsorbates is calculated as a function of Pd concentration inside the particles. At low Pd contents none of the Pd atoms emerge on the surface in the lowest-energy chemical orderings. However, surface Pd1 sites become stable, when Pd content inside a Pd-Au particle reaches ca. 60%. Further Pd content increase up to almost pure Pd core is accompanied by increased concentration of surface Pd atoms, mostly as Pd1 sites, although larger Pd ensembles as dimers and linear trimers are formed as well. Analysis of the chemical orderings inside PdAu nanoparticles at different Pd contents revealed that enrichment of the subsurface shell by Pd with predominant occupation of its edge positions precedes emergence of Pd surface species
Cite:
Mamatkulov M.
, Yudanov I.V.
, Bukhtiyarov A.V.
, Neyman K.M.
Pd Single-Atom Sites on the Surface of PdAu Nanoparticles: A DFT-Based Topological Search for Suitable Compositions
Nanomaterials. 2021.
V.11. N1. 122
:1-17. DOI: 10.3390/nano11010122
WOS
Scopus
РИНЦ
AN
PMID
OpenAlex
Pd Single-Atom Sites on the Surface of PdAu Nanoparticles: A DFT-Based Topological Search for Suitable Compositions

Files:
Full text from publisher
Dates:
Submitted: | Dec 11, 2020 |
Accepted: | Jan 4, 2021 |
Published print: | Jan 7, 2021 |
Published online: | Jan 7, 2021 |
Identifiers:
Web of science: | WOS:000610633400001 |
Scopus: | 2-s2.0-85099219032 |
Elibrary: | 45014951 |
Chemical Abstracts: | 2021:1070519 |
PMID: | 33430403 |
OpenAlex: | W3119783704 |