Sciact
  • EN
  • RU

The DFT Approach to Predict 13C NMR Chemical Shifts of Hydrocarbon Species Adsorbed on Zn-Modified Zeolites Full article

Journal PCCP: Physical Chemistry Chemical Physics
ISSN: 1463-9076 , E-ISSN: 1463-9084
Output data Year: 2022, Volume: 24, Pages: 22241-22249 Pages count : 9 DOI: 10.1039/d2cp02468c
Tags correlated molecular calculations; Gaussian-basis sets; fitting basis-sets; in-situ NMR; methane activation; ZSM-5 zeolite; propane aromatization; Zn/MFI catalyst; orbital methods; Hartree-Fock
Authors Kolganov Alexander A. 1 , Gabrienko Anton A. 1 , Stepanov Alexander G. 1
Affiliations
1 Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, Prospekt Akademika Lavrentieva 5, Novosibirsk 630090, Russia

Funding (2)

1 Russian Foundation for Basic Research 20-33-90093
2 Ministry of Science and Higher Education of the Russian Federation 0239-2021-0003

Abstract: 13 C MAS NMR spectroscopy is a powerful technique to study the mechanisms of hydrocarbon transformations on heterogeneous catalysts. It can reliably identify the surface intermediates and the adsorbed products based on the analysis of their 13C chemical shifts, δ(13C). However, the unambiguous assignment of the detected signals is always a challenge due to the uncertainty of the nature of the surface intermediates formed and the mechanism of adsorbed species interaction with active sites. The way to solve this problem is the application of DFT calculations to predict chemical shifts for the expected intermediate hydrocarbon species. Herein, the methodology for δ(13C) chemical shift calculations for adsorbed species has been proposed. It includes: (i) zeolite framework optimization with periodic DFT (pPBE); (ii) medium-sized cluster geometry optimization with hybrid GGA (PBE0), and (iii) σ(13C) values calculation followed by δ(13C) estimation using the linear regression method. It is inferred that the TPSS/cc-pVTZ method provides the best computational cost/accuracy ratio for the set of adsorbed hydrocarbon species that was previously detected experimentally on the surface of Zn-containing zeolites. The drawbacks of the computation method have also been revealed and discussed.
Cite: Kolganov A.A. , Gabrienko A.A. , Stepanov A.G.
The DFT Approach to Predict 13C NMR Chemical Shifts of Hydrocarbon Species Adsorbed on Zn-Modified Zeolites
PCCP: Physical Chemistry Chemical Physics. 2022. V.24. P.22241-22249. DOI: 10.1039/d2cp02468c WOS Scopus РИНЦ ANCAN PMID OpenAlex
Dates:
Submitted: May 31, 2022
Accepted: Aug 30, 2022
Published online: Aug 31, 2022
Published print: Sep 21, 2022
Identifiers:
Web of science: WOS:000853094700001
Scopus: 2-s2.0-85138459003
Elibrary: 50333028
Chemical Abstracts: 2022:2366891
Chemical Abstracts (print): 180:193376
PMID: 36098054
OpenAlex: W4293770486
Citing:
DB Citing
Web of science 2
Scopus 2
Elibrary 2
OpenAlex 2
Altmetrics: