Antibacterial Effect of Carbon Nanomaterials: Nanotubes, Carbon Nanofibers, Nanodiamonds, and Onion-like Carbon Full article
Journal |
Materials
ISSN: 1996-1944 |
||||
---|---|---|---|---|---|
Output data | Year: 2023, Volume: 16, Number: 3, Article number : 957, Pages count : 15 DOI: 10.3390/ma16030957 | ||||
Tags | carbon nanotubes; nanodiamond; catalytic filamentous carbon; onion-like carbon; antibacterial effect; Escherichia coli; Staphylococcus aureus | ||||
Authors |
|
||||
Affiliations |
|
Funding (1)
1 | Russian Science Foundation | 22-25-00715 |
Abstract:
The increasing resistance of bacteria and fungi to antibiotics is one of the health threats facing humanity. Of great importance is the development of new antibacterial agents or alternative approaches to reduce bacterial resistance to available antibacterial drugs. Due to the complexity of their properties, carbon nanomaterials (CNMs) may be of interest for a number of biomedical applications. One of the problems in studying the action of CNMs on microorganisms is the lack of universally standardized methods and criteria for assessing antibacterial and antifungal activity. In this work, using a unified methodology, a comparative study of the antimicrobial properties of the CNM systemic kit against common opportunistic microorganisms, namely Escherichia coli and Staphylococcus aureus, was carried out. Multiwalled carbon nanotubes (MWNTs), catalytic filamentous carbon with different orientations of graphene blocks (coaxial–conical and stacked, CFC), ionic carbon (OLC), and ultrafine explosive nanodiamonds (NDs) were used as a system set of CNMs. The highest antimicrobial activity was shown by NDs, both types of CFCs, and carboxylated hydrophilic MWCNTs. The SEM results point out the difference between the mechanisms of action of UDD and CFC nanotubes.
Cite:
Moskvitina E.
, Kuznetsov V.
, Moseenkov S.
, Serkova A.
, Zavorin A.
Antibacterial Effect of Carbon Nanomaterials: Nanotubes, Carbon Nanofibers, Nanodiamonds, and Onion-like Carbon
Materials. 2023. V.16. N3. 957 :1-15. DOI: 10.3390/ma16030957 WOS Scopus РИНЦ AN PMID OpenAlex
Antibacterial Effect of Carbon Nanomaterials: Nanotubes, Carbon Nanofibers, Nanodiamonds, and Onion-like Carbon
Materials. 2023. V.16. N3. 957 :1-15. DOI: 10.3390/ma16030957 WOS Scopus РИНЦ AN PMID OpenAlex
Dates:
Submitted: | Dec 12, 2022 |
Accepted: | Jan 13, 2023 |
Published online: | Jan 19, 2023 |
Published print: | Feb 1, 2023 |
Identifiers:
Web of science: | WOS:000930408500001 |
Scopus: | 2-s2.0-85147799900 |
Elibrary: | 53957877 |
Chemical Abstracts: | 2023:315171 |
PMID: | 36769964 |
OpenAlex: | W4317624646 |