Sciact
  • EN
  • RU

Photoelectrochemical Methods for the Determination of the Flat-Band Potential in Semiconducting Photocatalysts: A Comparison Study Full article

Journal Langmuir
ISSN: 0743-7463 , E-ISSN: 1520-5827
Output data Year: 2023, Volume: 39, Number: 38, Pages: 13466–13480 Pages count : 15 DOI: 10.1021/acs.langmuir.3c01158
Tags Charge transfer; Cobalt compounds; Doping (additives); Electrochemical impedance spectroscopy; Electrolytes; Energy gap; Nanocatalysts; Tungsten compounds
Authors Koshevoy Evgeny 1 , Gribov Evgeny 1 , Polskikh Danil 1 , Lyulyukin Mikhail 1 , Solovyeva Maria 1 , Cherepanova Svetlana 1 , Kozlov Denis 1 , Selishchev Dmitry 1
Affiliations
1 Boreskov Institute of Catalysis, Lavrentieva 5, Novosibirsk 630090, Russia

Funding (2)

1 Ministry of Science and Higher Education of the Russian Federation 0239-2021-0007
2 Russian Science Foundation 20-73-10135

Abstract: In addition to the band gap of a semiconducting photocatalyst, its band edges are important because they play a crucial role in the analysis of charge transfer and possible pathways of the photocatalytic reaction. The Mott–Schottky method using electrochemical impedance spectroscopy is the most common experimental technique for the determination of the electron potential in photocatalysts. This method is well suited for large crystals, but in the case of nanocatalysts, when the thickness of the charged layer is comparable with the size of the nanocrystals, the capacitance of the Helmholtz layer can substantially affect the measured potential. A contact between the electrolyte and the substrate, used for deposition of the photocatalyst, also affects the impedance. Application of other photoelectrochemical methods may help to avoid concerns in the interpretation of impedance data and improve the reliability of measurements. In this study, we have successfully prepared five visible-light active photocatalysts (i.e., N-doped TiO2, WO3, Bi2WO6, CoO, and g-C3N4) and measured their flat-band potentials using four (photo)electrochemical methods. The potentials are compared for all methods and discussed regarding the type of semiconducting material and its properties. The effect of methanol as a sacrificial agent for the enhanced transfer of charge carriers is studied and discussed for each method.
Cite: Koshevoy E. , Gribov E. , Polskikh D. , Lyulyukin M. , Solovyeva M. , Cherepanova S. , Kozlov D. , Selishchev D.
Photoelectrochemical Methods for the Determination of the Flat-Band Potential in Semiconducting Photocatalysts: A Comparison Study
Langmuir. 2023. V.39. N38. P.13466–13480. DOI: 10.1021/acs.langmuir.3c01158 WOS Scopus РИНЦ AN OpenAlex
Dates:
Submitted: May 2, 2023
Accepted: Aug 21, 2023
Published online: Sep 11, 2023
Published print: Sep 26, 2023
Identifiers:
Web of science: WOS:001064821000001
Scopus: 2-s2.0-85172425135
Elibrary: 54966962
Chemical Abstracts: 2023:1866051
OpenAlex: W4386595053
Citing:
DB Citing
OpenAlex 19
Scopus 20
Web of science 21
Elibrary 16
Altmetrics: