Rapid Molecular Reconstruction of the Chemical Composition of Complex Hydrocarbon Mixtures Full article
Journal |
Theoretical Foundations of Chemical Engineering
ISSN: 0040-5795 , E-ISSN: 1608-3431 |
||
---|---|---|---|
Output data | Year: 2024, Volume: 58, Number: 6, Pages: 1-8 Pages count : 8 DOI: 10.1134/S0040579525601104 | ||
Tags | Molecular reconstruction, stochastic reconstruction, compositional modeling, heavy oil fractions, entropy maximization | ||
Authors |
|
||
Affiliations |
|
Funding (1)
1 | Ministry of Science and Higher Education of the Russian Federation | FWUR-2024-0037 |
Abstract:
A new heuristic approach is proposed for significantly faster performance of stochastic molecular reconstruction. Its basis is a two-stage method that combines stochastic reconstruction and entropy maximization reconstruction. In the proposed method, the search for optimal distribution parameters is carried out by solving several relatively simple optimization problems. The proposed method makes it possible to reconstruct the composition of a vacuum gas oil sample at least 100 times faster than the classical approach with genetic algorithms.
Cite:
Glazov N.A.
, Zagoruiko A.N.
Rapid Molecular Reconstruction of the Chemical Composition of Complex Hydrocarbon Mixtures
Theoretical Foundations of Chemical Engineering. 2024. V.58. N6. P.1-8. DOI: 10.1134/S0040579525601104 WOS Scopus
Rapid Molecular Reconstruction of the Chemical Composition of Complex Hydrocarbon Mixtures
Theoretical Foundations of Chemical Engineering. 2024. V.58. N6. P.1-8. DOI: 10.1134/S0040579525601104 WOS Scopus
Original:
Глазов Н.А.
, Загоруйко А.Н.
Быстрая молекулярная реконструкция химического состава сложных углеводородных смесей
Теоретические основы химической технологии. 2024. Т.58. №6. С.811-819. DOI: 10.31857/S0040357124060137
Быстрая молекулярная реконструкция химического состава сложных углеводородных смесей
Теоретические основы химической технологии. 2024. Т.58. №6. С.811-819. DOI: 10.31857/S0040357124060137
Dates:
Submitted: | Jan 30, 2024 |
Accepted: | Oct 30, 2024 |
Identifiers:
Web of science: | WOS:001450094100011 |
Scopus: | 2-s2.0-105000753581 |
Citing:
Пока нет цитирований