Sciact
  • EN
  • RU

Tailoring Fe-Pt Composite Nanostructures through Iron Precursor Selection in Aqueous Low-Temperature Synthesis Научная публикация

Журнал Journal of Composites Science
, E-ISSN: 2504-477X
Вых. Данные Год: 2025, Том: 9, Номер: 11, Номер статьи : 616, Страниц : 12 DOI: 10.3390/jcs9110616
Ключевые слова Fe-Pt nanocomposites; iron precursor; low-temperature synthesis; phase evolution; biphasic materials; L12 intermetallic phase; structural characterization
Авторы Prigorodova Anna N. 1 , Zakharov Nikita S. 1 , Pugachev Valery M. 1 , Shmakov Alexander N. 2 , Adodin Nickolay S. 1 , Russakov Dmitry M. 1
Организации
1 Federal Research Center of Coal and Coal Chemistry SB RAS, Kemerovo 650099, Russia
2 Resource Sharing Center “The Siberian Circular Photon Source”, Koltsovo 630559, Russia

Реферат: This study addresses the challenge of low-temperature synthesis of the high-performance L10 Fe-Pt intermetallic phase, which is critical for applications in ultra-high-density data storage and advanced magnetic devices. We demonstrate that the choice of iron precursor is a decisive factor in directing the phase composition and thermal evolution of Fe-Pt nanostructures, ultimately determining their suitability as functional composite materials. Fe-Pt systems were synthesized from aqueous solutions using platinum(IV) chloric acid (H2PtCl6) with either iron(III) ammonium sulfate (NH4Fe(SO4)2) or iron(II) sulfate (FeSO4). Comprehensive characterization using X-ray diffraction and high-resolution transmission electron microscopy revealed distinct composite formations. The iron(III) precursor yielded homogeneous, thermally stable nanocomposites: as-synthesized nanoparticles formed a Pt-based FCC solid solution (~5 nm), which upon annealing at 500 °C transformed into a biphasic nanocomposite of FCC solid solution and an L12 Fe21Pt79 intermetallic phase with minimal grain growth (~7 nm). In stark contrast, the system derived from iron(II) sulfate resulted in a heterogeneous composite of 4 nm Pt nanoparticles, an FCC solid solution, and discrete 1–3 nm Fe nanoparticles with L12-ordered FePt3 domains. Annealing this heterogeneous mixture caused phase segregation, forming significantly coarsened Pt-rich crystals (~30 nm) that were approximately 4–6 times larger than the crystallites in the annealed homogeneous composite, with negligible Fe incorporation. Our findings establish that precursor chemistry dictates the initial nanocomposite architecture, which in turn controls the pathway and success of low-temperature intermetallic phase formation. This work provides a crucial design principle for fabricating tailored Fe-Pt composite nanomaterials, moving beyond simple alloys to engineered multiphase systems for practical application.
Библиографическая ссылка: Prigorodova A.N. , Zakharov N.S. , Pugachev V.M. , Shmakov A.N. , Adodin N.S. , Russakov D.M.
Tailoring Fe-Pt Composite Nanostructures through Iron Precursor Selection in Aqueous Low-Temperature Synthesis
Journal of Composites Science. 2025. V.9. N11. 616 :1-12. DOI: 10.3390/jcs9110616 WOS Scopus OpenAlex СКИФ ID
Даты:
Поступила в редакцию: 30 сент. 2025 г.
Принята к публикации: 2 нояб. 2025 г.
Опубликована online: 8 нояб. 2025 г.
Опубликована в печати: 20 нояб. 2025 г.
Идентификаторы БД:
≡ Web of science: WOS:001625692500001
≡ Scopus: 2-s2.0-105023120140
≡ OpenAlex: W4416074904
≡ СКИФ ID: 4254
Цитирование в БД:
≡ Scopus Нет цитирований Сбор данных от 08.02.2026
≡ OpenAlex Нет цитирований Сбор данных от 08.02.2026
Альметрики: