Fast Purification of Air From Diethyl Sulfide with Nanosized TiO2 Aerosol Full article
Journal |
Applied Catalysis B: Environmental
ISSN: 0926-3373 , E-ISSN: 1873-3883 |
||||
---|---|---|---|---|---|
Output data | Year: 2013, Volume: 129, Pages: 318-324 Pages count : 7 DOI: 10.1016/j.apcatb.2012.09.019 | ||||
Tags | Anti-terrorism, Atmospheric chemistry, CWA, Decontamination, Gas phase, Nanoparticles, Photocatalysis, Static, Sulfide, Titania, Titanium dioxide, Troposphere, Water concentration | ||||
Authors |
|
||||
Affiliations |
|
Funding (4)
1 | International Science and Technology Center | 3305 |
2 | The Ministry of Education and Science of the Russian Federation | 16.513.11.3091 |
3 | Президиум РАН | 27.56 |
4 | Council for Grants of the President of the Russian Federation | НШ-524.2012.3 |
Abstract:
TiO2 aerosol generated by a sonic method has been applied for fast purification of air from diethyl sulfide (DES) vapors inside a closed chamber. Two types of experiments modeling the possible real situations were conducted – (1) aerosol spraying without irradiation followed by UV irradiation after aerosol deposition and (2) aerosol spraying under UV irradiation. Adsorption of DES on TiO2 particles was complete and fastest at the lowest air relative humidity (RH) while photocatalytic oxidation was fastest at RH 37%. The minimal TiO2 aerosol surface area needed to remove from air one DES molecule is 2.3 nm2 at the adsorption and 1.5 nm2 at the photocatalytic oxidation. The quantum efficiency of the DES consumption increases from 4.7 to 20% when the initial DES concentration increases from 100 to 1000 ppm. The
overall quantum efficiency of the DES deep oxidation reached 41 and 58% for the initial concentration 100 and 1000 ppm, respectively. The results demonstrate unusually high activity of TiO2 aerosol for the adsorption-photocatalytic air purification from DES.
Cite:
Vorontsov A.V.
, Besov A.S.
, Parmon V.N.
Fast Purification of Air From Diethyl Sulfide with Nanosized TiO2 Aerosol
Applied Catalysis B: Environmental. 2013. V.129. P.318-324. DOI: 10.1016/j.apcatb.2012.09.019 WOS Scopus РИНЦ ANCAN OpenAlex
Fast Purification of Air From Diethyl Sulfide with Nanosized TiO2 Aerosol
Applied Catalysis B: Environmental. 2013. V.129. P.318-324. DOI: 10.1016/j.apcatb.2012.09.019 WOS Scopus РИНЦ ANCAN OpenAlex
Dates:
Submitted: | Jun 18, 2012 |
Accepted: | Sep 13, 2012 |
Published online: | Sep 27, 2012 |
Published print: | Jan 17, 2013 |
Identifiers:
Web of science: | WOS:000312689500036 |
Scopus: | 2-s2.0-84867619512 |
Elibrary: | 20415828 |
Chemical Abstracts: | 2012:1765007 |
Chemical Abstracts (print): | 158:85031 |
OpenAlex: | W2004163436 |