Magnesium-Containing Catalysts for the Decarboxylation of Bio-Oil
Научная публикация
Общее |
Язык:
Английский,
Жанр:
Статья (Full article),
Статус опубликования:
Опубликована,
Оригинальность:
Переводная
|
Журнал |
Catalysis in Industry
ISSN: 2070-0504
, E-ISSN: 2070-0555
|
Вых. Данные |
Год: 2013,
Том: 5,
Номер: 3,
Страницы: 260-268
Страниц
: 9
DOI:
10.1134/S2070050413030069
|
Ключевые слова |
Basic oxides, Bio-oil, Deactivation, Decarboxylation, Magnesium-containing catalysts, Pentanoic acid, Stability |
Авторы |
Khromova S.A.
1,2
,
Smirnov A.A.
1,2
,
Selishcheva S.A.
1,2
,
Kukushkin R.G.
1,2
,
Dundich V.O.
1
,
Trusov L.I.
3
,
Yakovlev V.A.
1,2
|
Организации |
1 |
Институт катализа им. Г.К. Борескова СО РАН
|
2 |
Новосибирский национальный исследовательский государственный университет
|
3 |
Ассоциация делового сотрудничества в области передовых комплексных технологий «АСПЕКТ»
|
|
Информация о финансировании (3)
1
|
Совет по грантам Президента Российской Федерации
|
НШ-524.2012.3
|
2
|
Министерство образования и науки Российской Федерации
|
16.526.11.6003
|
3
|
Министерство образования и науки Российской Федерации
|
16.740.11.0683
|
At present, one of the most promising methods of processing renewable raw materials is pyrolysis, which allows liquid organic products (bio-oil) to be derived from biomass. For obtaining fuel products from bioхoil, the latter needs to be preliminarily upgraded. It is appropriate to carry out this process in two stages. The first stage — decarboxylation — is intended to reduce the corrosiveness (acidity) of the feedstock and hydrogen consumption at the second stage. Decarboxylation is usually conducted over noble metal-based catalysts. There are examples of employing cheaper catalysts based on alkaline-earth metals; however, these catalysts suffer from insufficient stability. Here, we report the activity of MgO-based catalysts in the decarboxylation of pentanoic acid, a model compound imitating bio-oil, and the effect of dopants on the stability of the magnesium-containing catalysts. The process has been carried out in an inert atmosphere at a temperature of 350°C and a pressure of 0.50 MPa. Raising the MgO calcination temperature to 1200°C and introducing stabilizing admixtures (Al2O3, SiO2, and ZrO2) affords catalysts that are mainly deactivated via carbonate formation rather than the formation of soluble magnesium salts and are, therefore, more promising from the standpoint of regenerability.