Sciact
Toggle navigation
  • EN
  • RU

Разделы:

  • Статьи
  • Книги
  • Доклады на конференциях
  • Тезисы докладов
  • Патенты

Design of Catalytic Polyfunctional Nanomaterials for the Hydrogen Production Processes Научная публикация

Общее Язык: Английский, Жанр: Статья (Full article),
Статус опубликования: Опубликована, Оригинальность: Переводная
Журнал Nanotechnologies in Russia
ISSN: 1995-0780 , E-ISSN: 1995-0799
Вых. Данные Год: 2020, Том: 15, Номер: 3-6, Страницы: 308-313 Страниц : 6 DOI: 10.1134/S1995078020030106
Авторы Potemkin D.I. 1,2,3 , Snytnikov P.V. 1,2 , Badmaev S.D. 1,2 , Uskov S.I. 1,2 , Gorlova A.M. 1,2 , Rogozhnikov V.N. 1,4 , Pechenkin A.A. 1,4 , Kulikov A.V. 1 , Shilov V.A. 1,2 , Ruban N.V. 1,2 , Belyaev V.D. 1,2 , Sobyanin V.A. 1
Организации
1 Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090 Russia
2 Novosibirsk State University, Novosibirsk, 630090 Russia c Novosibirsk State Technical University, Novosibirsk, 630073 Russia
3 Novosibirsk State Technical University, Novosibirsk, 630073 Russia
4 National University of Oil and Gas “Gubkin University,” Moscow, 119991 Russia

Информация о финансировании (1)

1 Российский фонд фундаментальных исследований 19-33-60008 (АААА-А19-119111890028-9)

Реферат: Abstract: The processes of hydrogen production from various types of fossil and renewable fuels are energy-intensive multi-route chemical reactions, and for their efficient implementation it is necessary to use selective and high-performance catalysts that combine high activity, thermal conductivity, and corrosion and thermal resistance. A general strategy for the design of catalytic systems for hydrogen production is outlined; it consists in the use of composite catalysts of the “metal nanoparticles/active oxide nanoparticles/structural oxide component/structured metal support” type; an approach for their directed synthesis is described. The structured metal support provides efficient heat removal or supply for exo- or endothermic reactions, possesses good hydrodynamic characteristics, and facilitates scale transition. The structural oxide component (aluminum oxide) provides thermal and corrosion resistance and a high specific surface area of the catalytic coating, as well as performing a protective function for the metal support. The active oxide component (mainly cerium–zirconium oxides) increases resistance to carbonization due to oxygen mobility and maintains a high dispersion of the active component due to its strong metal–support interaction. Metal nanoparticles 1–2 nm in size are involved in the activation of substrate molecules. FeCrAl alloy wire meshes, formed into cylindrical blocks of specified sizes, to be used as a heat-conducting substrate. By controlled annealing with the formation of a micron α-Al2O3 layer and subsequent deposition of a η-Al2O3 layer according to the Bayer method (through aluminum hydroxide), a structural layer of η-Al2O3 with a “breathing” needle morphology was deposited onto the FeCrAl alloy surface; then the catalytic active component was deposited onto this layer by impregnation and/or deposition. The efficiency of the proposed strategy is shown for Rh/Ce0.75Zr0.25O2 – δ–η-Al2O3/FeCrAl catalysts for methane tri-reforming and Cu–CeO2 – δ/η-Al2O3/FeCrAl catalysts for dimethoxymethane steam reforming. © 2020, Pleiades Publishing, Ltd.
Библиографическая ссылка: Potemkin D.I. , Snytnikov P.V. , Badmaev S.D. , Uskov S.I. , Gorlova A.M. , Rogozhnikov V.N. , Pechenkin A.A. , Kulikov A.V. , Shilov V.A. , Ruban N.V. , Belyaev V.D. , Sobyanin V.A.
Design of Catalytic Polyfunctional Nanomaterials for the Hydrogen Production Processes
Nanotechnologies in Russia. 2020. V.15. N3-6. P.308-313. DOI: 10.1134/S1995078020030106 WOS Scopus
Оригинальная версия: Потемкин Д.И. , Снытников П.В. , Бадмаев С.Д. , Усков С.И. , Горлова А.М. , Рогожников В.Н. , Печенкин А.А. , Куликов А.В. , Шилов В.А. , Рубан Н.В. , Беляев В.Д. , Собянин В.А.
Дизайн каталитических полифункциональных наноматериалов для процессов получения водорода
Российские нанотехнологии. 2020. Т.15. №3. С.316-322. DOI: 10.1134/S1992722320030103 РИНЦ
Даты:
Опубликована в печати: 1 мая 2020 г.
Поступила в редакцию: 3 июн. 2020 г.
Принята к публикации: 14 авг. 2020 г.
Опубликована online: 28 дек. 2020 г.
Идентификаторы:
Web of science WOS:000603308200005
Scopus 2-s2.0-85098241092
Альметрики: