Bioprospecting Thermophilic Glycosyl Hydrolases, from Hot Springs of Himachal Pradesh, for Biomass Valorization Full article
Journal |
AMB Express
, E-ISSN: 2191-0855 |
||||
---|---|---|---|---|---|
Output data | Year: 2018, Volume: 8, Article number : 168, Pages count : 15 DOI: 10.1186/s13568-018-0690-4 | ||||
Tags | Glycosyl hydrolases, Thermophilic, Biomass, Hot springs | ||||
Authors |
|
||||
Affiliations |
|
Funding (1)
1 | Department of Biotechnology | DBT/IC-2/Indo-Russia/2014-16/04 |
Abstract:
The harnessing of biocatalysts from extreme environment hot spring niche for biomass conversion is significant and promising owing to the special characteristics of extremozymes attributed by intriguing biogeochemistry and extreme conditions of these environments. Hence, in the present study 38 bacterial isolates obtained from hot springs of Manikaran (~ 95 °C), Kalath (~ 50 °C) and Vasist (~ 65 °C) of Himachal Pradesh were screened for glycosyl hydrolases by in situ enrichment technique using lignocellulosic biomass (LCB). Based on their hydrolytic potential 5 isolates were selected and they were Bacillus tequilensis (VCB1, VCB2 and VSDB4), and B. licheniformis (KBFB2 and KBFB3). Cellulolytic activity assayed by growth under submerged fermentation showed that B. tequilensis VCB1 had maximum FPA activity (3.38 IU ml−1) in 48 h, while B. licheniformis KBFB3 excelled for endoglucanase (EGA of 4.81 IU ml−1 in 24 h) and cellobiase (0.71 IU ml−1 in 48 h) activities. Among all the thermophilic biocatalysts evaluated, highest exoglucanase (0.06 IU ml−1) activity was observed in B. tequilensis VSDB4 while endoglucanase of B. licheniformis KBFB3 showed optimum specific activity at pH 7 and 70 °C. Further, the presence of celS, celB and xlnB genes in the isolates suggest their possible role in biomass conversion. Protein profiling by SDS-PAGE analysis revealed that cellulase isoforms migrated with molecular masses of 75 kDa. The endoglucanase activity of promising strain B. licheniformis KBFB3 was enhanced in the presence of Ca2+, mercaptoethanol and sodium hypochlorite whereas moderately inhibited by Cu2+, Zn2+, urea, SDS and H2O2. The results of this study indicate scope for the possible development of novel biocatalysts with multifunctional thermostable glycosyl hydrolases from hot springs for efficient hydrolysis of the complex lignocellulosic biomass into simple sugars and other derived bioproducts leading to biomass valorization.
Cite:
Thankappan S.
, Kandasamy S.
, Joshi B.
, Sorokina K.N.
, Taran O.P.
, Uthandi S.
Bioprospecting Thermophilic Glycosyl Hydrolases, from Hot Springs of Himachal Pradesh, for Biomass Valorization
AMB Express. 2018.
V.8. 168
:1-15. DOI: 10.1186/s13568-018-0690-4
WOS
Scopus
РИНЦ
AN
PMID
OpenAlex
Bioprospecting Thermophilic Glycosyl Hydrolases, from Hot Springs of Himachal Pradesh, for Biomass Valorization

Files:
Full text from publisher
Dates:
Submitted: | Jun 6, 2018 |
Accepted: | Sep 26, 2018 |
Published online: | Oct 15, 2018 |
Published print: | Dec 1, 2018 |
Identifiers:
Web of science: | WOS:000447488900001 |
Scopus: | 2-s2.0-85055041982 |
Elibrary: | 38617409 |
Chemical Abstracts: | 2018:1960169 |
PMID: | 30324223 |
OpenAlex: | W2897638542 |