Defect Structure of Nanocrystalline NiO Oxide Stabilized by SiO2 Full article
Journal |
Inorganics
, E-ISSN: 2304-6740 |
||
---|---|---|---|
Output data | Year: 2023, Volume: 11, Number: 3, Article number : 97, Pages count : 14 DOI: 10.3390/inorganics11030097 | ||
Tags | defect structure; modeling; nanoparticles; nickel oxide | ||
Authors |
|
||
Affiliations |
|
Funding (3)
1 | Ministry of Science and Higher Education of the Russian Federation | 0239-2021-0002 |
2 | Ministry of Science and Higher Education of the Russian Federation | 0239-2021-0005 |
3 | Ministry of Science and Higher Education of the Russian Federation | 0239-2021-0003 |
Abstract:
In this paper, structural features of the NiO-SiO2 nanocrystalline catalyst synthesized by the sol-gel method were studied by X-ray diffraction (XRD), high-resolution transmission electron microscopy (TEM), and differential dissolution (DD). The XRD pattern of NiO-SiO2 significantly differs from the “ideal” NiO pattern: the peaks of the NiO-like phase are asymmetric, especially the 111 diffraction peak. The NiO-SiO2 nanocrystalline catalyst was investigated by means of XRD simulations based on two approaches: conventional Rietveld analysis and statistical models of 1D disordered crystals. Through a direct simulation of XRD profiles, structural information is extracted from both the Bragg and diffuse scattering. XRD simulations showed that the asymmetry of all the diffraction peaks is due to the presence of two NiO-like oxides with different lattice constants and different average sizes: ~90 wt% of mixed Ni-Si oxide (Ni:Si = 0.14:0.86) with average crystallite sizes (D ~ 27.5 Å) and ~10 wt% of pure NiO (D ~ 50 Å). The high asymmetry of the 111 diffraction peak is due to the appearance of diffuse scattering caused by the inclusion of tetrahedral SiO2 layers between octahedral NiO layers. Such methods as TEM and DD were applied as independent criteria to prove the structural model, and the results obtained confirm the formation of mixed Ni-Si oxide.
Cite:
Mikhnenko M.D.
, Cherepanova S.V.
, Gerasimov E.Y.
, Pochtar A.A.
, Alekseeva (Bykova) M.V.
, Kukushkin R.G.
, Yakovlev V.A.
, Bulavchenko O.A.
Defect Structure of Nanocrystalline NiO Oxide Stabilized by SiO2
Inorganics. 2023. V.11. N3. 97 :1-14. DOI: 10.3390/inorganics11030097 WOS Scopus РИНЦ AN OpenAlex
Defect Structure of Nanocrystalline NiO Oxide Stabilized by SiO2
Inorganics. 2023. V.11. N3. 97 :1-14. DOI: 10.3390/inorganics11030097 WOS Scopus РИНЦ AN OpenAlex
Dates:
Submitted: | Jan 31, 2023 |
Accepted: | Feb 23, 2023 |
Published online: | Feb 27, 2023 |
Published print: | Mar 1, 2023 |
Identifiers:
Web of science: | WOS:000955624800001 |
Scopus: | 2-s2.0-85151144467 |
Elibrary: | 54175609 |
Chemical Abstracts: | 2023:701150 |
OpenAlex: | W4322619572 |